利用机器学习和基于cfd的响应面分析优化心室辅助装置设计中的血液相容性指标。

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Mohamed Bounouib, Mourad Taha-Janan, Wajih Maazouzi
{"title":"利用机器学习和基于cfd的响应面分析优化心室辅助装置设计中的血液相容性指标。","authors":"Mohamed Bounouib, Mourad Taha-Janan, Wajih Maazouzi","doi":"10.1177/03913988251346712","DOIUrl":null,"url":null,"abstract":"<p><p>Ventricular assist devices (VADs) are essential for end-stage heart failure patients, but their design must balance hydraulic efficiency and hemocompatibility to minimize blood damage. This study presents a multi-objective optimization framework integrating computational fluid dynamics (CFD), Random Forest Regression (RFR), and Bayesian optimization to improve VAD rotor hemocompatibility. Seven key design parameters (inlet/outlet blade angles, blade count, rotational speed, clearance gap, blade thickness, and rotor length) were optimized using a D-optimal design of experiments. The RFR surrogate model demonstrated superior performance in handling the complex parameter interactions, achieving high predictive accuracy (<i>R</i><sup>2</sup> > 0.84 for all hemocompatibility metrics). CFD simulations employing a Carreau-Yasuda blood model and rigorous mesh independence analysis evaluated shear stress distributions, exposure times, hemolysis index (HI), and platelet activation state (PAS). The optimized design achieved 97.24% of blood flow with shear stress <50 Pa, a HI of 0.01%, and PAS of 1 × 10<sup>-6</sup>%, representing significant improvements over baseline configurations. While this computational study provides comprehensive parametric insights, future experimental validation is recommended to confirm these findings under physiological conditions. The proposed framework offers a systematic approach for developing high-performance VADs with enhanced hemocompatibility.</p>","PeriodicalId":13932,"journal":{"name":"International Journal of Artificial Organs","volume":" ","pages":"367-383"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of hemocompatibility metrics in ventricular assist device design using machine learning and CFD-based response surface analysis.\",\"authors\":\"Mohamed Bounouib, Mourad Taha-Janan, Wajih Maazouzi\",\"doi\":\"10.1177/03913988251346712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ventricular assist devices (VADs) are essential for end-stage heart failure patients, but their design must balance hydraulic efficiency and hemocompatibility to minimize blood damage. This study presents a multi-objective optimization framework integrating computational fluid dynamics (CFD), Random Forest Regression (RFR), and Bayesian optimization to improve VAD rotor hemocompatibility. Seven key design parameters (inlet/outlet blade angles, blade count, rotational speed, clearance gap, blade thickness, and rotor length) were optimized using a D-optimal design of experiments. The RFR surrogate model demonstrated superior performance in handling the complex parameter interactions, achieving high predictive accuracy (<i>R</i><sup>2</sup> > 0.84 for all hemocompatibility metrics). CFD simulations employing a Carreau-Yasuda blood model and rigorous mesh independence analysis evaluated shear stress distributions, exposure times, hemolysis index (HI), and platelet activation state (PAS). The optimized design achieved 97.24% of blood flow with shear stress <50 Pa, a HI of 0.01%, and PAS of 1 × 10<sup>-6</sup>%, representing significant improvements over baseline configurations. While this computational study provides comprehensive parametric insights, future experimental validation is recommended to confirm these findings under physiological conditions. The proposed framework offers a systematic approach for developing high-performance VADs with enhanced hemocompatibility.</p>\",\"PeriodicalId\":13932,\"journal\":{\"name\":\"International Journal of Artificial Organs\",\"volume\":\" \",\"pages\":\"367-383\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Organs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03913988251346712\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03913988251346712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

心室辅助装置(VADs)对终末期心力衰竭患者至关重要,但其设计必须平衡水力效率和血液相容性,以尽量减少血液损伤。本研究提出了一种结合计算流体力学(CFD)、随机森林回归(RFR)和贝叶斯优化的多目标优化框架,以提高VAD转子的血液相容性。采用d -最优设计对7个关键设计参数(进口/出口叶片角、叶片数、转速、间隙、叶片厚度和转子长度)进行了优化。RFR替代模型在处理复杂参数相互作用方面表现出优越的性能,实现了很高的预测准确性(所有血液相容性指标的R2 > 0.84)。采用carau - yasuda血液模型的CFD模拟和严格的网格独立性分析评估了剪切应力分布、暴露时间、溶血指数(HI)和血小板激活状态(PAS)。优化后的设计在剪切应力-6%的情况下实现了97.24%的血流量,比基线配置有了显著改善。虽然这项计算研究提供了全面的参数见解,但建议未来的实验验证在生理条件下证实这些发现。提出的框架为开发具有增强血液相容性的高性能VADs提供了系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of hemocompatibility metrics in ventricular assist device design using machine learning and CFD-based response surface analysis.

Ventricular assist devices (VADs) are essential for end-stage heart failure patients, but their design must balance hydraulic efficiency and hemocompatibility to minimize blood damage. This study presents a multi-objective optimization framework integrating computational fluid dynamics (CFD), Random Forest Regression (RFR), and Bayesian optimization to improve VAD rotor hemocompatibility. Seven key design parameters (inlet/outlet blade angles, blade count, rotational speed, clearance gap, blade thickness, and rotor length) were optimized using a D-optimal design of experiments. The RFR surrogate model demonstrated superior performance in handling the complex parameter interactions, achieving high predictive accuracy (R2 > 0.84 for all hemocompatibility metrics). CFD simulations employing a Carreau-Yasuda blood model and rigorous mesh independence analysis evaluated shear stress distributions, exposure times, hemolysis index (HI), and platelet activation state (PAS). The optimized design achieved 97.24% of blood flow with shear stress <50 Pa, a HI of 0.01%, and PAS of 1 × 10-6%, representing significant improvements over baseline configurations. While this computational study provides comprehensive parametric insights, future experimental validation is recommended to confirm these findings under physiological conditions. The proposed framework offers a systematic approach for developing high-performance VADs with enhanced hemocompatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Artificial Organs
International Journal of Artificial Organs 医学-工程:生物医学
CiteScore
3.40
自引率
5.90%
发文量
92
审稿时长
3 months
期刊介绍: The International Journal of Artificial Organs (IJAO) publishes peer-reviewed research and clinical, experimental and theoretical, contributions to the field of artificial, bioartificial and tissue-engineered organs. The mission of the IJAO is to foster the development and optimization of artificial, bioartificial and tissue-engineered organs, for implantation or use in procedures, to treat functional deficits of all human tissues and organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信