Nasser Abdullah Ghdayer Al Kaabi, Karthishwaran Kandhan, Faisal Hayat, Saif Ali Matar Al Blooshi, Mohamed S Sheteiwy, Mohammed Alyafei
{"title":"通过新的遗传改良策略塑造枣椰树(Phoenix dactylifera)的未来","authors":"Nasser Abdullah Ghdayer Al Kaabi, Karthishwaran Kandhan, Faisal Hayat, Saif Ali Matar Al Blooshi, Mohamed S Sheteiwy, Mohammed Alyafei","doi":"10.1071/FP25021","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional breeding of date palm (Phoenix dactylifera ) is inherently challenging due to its long generation time, dioecious nature, and high genetic heterogeneity. However, current developments in genomics and molecular biology offer promising avenues for accelerating breeding programs, particularly through high-throughput technologies including functional genomics. This article reviews genomic tools such as like CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9) that may bring significant changes in date palm breeding. The CRISPR-Cas9 system enables scientists to accurately target genomic regions, which helps enhance breeding accuracy by adding advantageous traits and eliminating unfavorable genes through precision editing. Transcriptome and metabolome analyses have also explained the regulation of thousands of differentially expressed genes (DEGs) and metabolic pathways under environmental stress. These studies contribute to enhance the knowledge of stress tolerance mechanisms, which include the secondary metabolic process of flavonoids. Genomic studies illustrating single nucleotide polymorphism (SNP)-based diversity between cultivars from north African and the Arabian Gulf provide new genetic resources for selective breeding. The work relates genome-wide association studies (GWAS) and miRNA profiling to elucidate key regulatory networks involved in fruit development and stress resilience. The integration of such advanced technologies, especially the CRISPR-Cas9 system, is revolutionizing the landscape of date palm breeding, opening new avenues for accelerated development of superior cultivars that meet the needs of modern agriculture.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaping the future of date palm (<i>Phoenix dactylifera</i>) through new genetic improvement strategies.\",\"authors\":\"Nasser Abdullah Ghdayer Al Kaabi, Karthishwaran Kandhan, Faisal Hayat, Saif Ali Matar Al Blooshi, Mohamed S Sheteiwy, Mohammed Alyafei\",\"doi\":\"10.1071/FP25021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional breeding of date palm (Phoenix dactylifera ) is inherently challenging due to its long generation time, dioecious nature, and high genetic heterogeneity. However, current developments in genomics and molecular biology offer promising avenues for accelerating breeding programs, particularly through high-throughput technologies including functional genomics. This article reviews genomic tools such as like CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9) that may bring significant changes in date palm breeding. The CRISPR-Cas9 system enables scientists to accurately target genomic regions, which helps enhance breeding accuracy by adding advantageous traits and eliminating unfavorable genes through precision editing. Transcriptome and metabolome analyses have also explained the regulation of thousands of differentially expressed genes (DEGs) and metabolic pathways under environmental stress. These studies contribute to enhance the knowledge of stress tolerance mechanisms, which include the secondary metabolic process of flavonoids. Genomic studies illustrating single nucleotide polymorphism (SNP)-based diversity between cultivars from north African and the Arabian Gulf provide new genetic resources for selective breeding. The work relates genome-wide association studies (GWAS) and miRNA profiling to elucidate key regulatory networks involved in fruit development and stress resilience. The integration of such advanced technologies, especially the CRISPR-Cas9 system, is revolutionizing the landscape of date palm breeding, opening new avenues for accelerated development of superior cultivars that meet the needs of modern agriculture.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP25021\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP25021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
由于枣椰树世代时间长,雌雄异株性强,遗传异质性高,传统育种具有一定的挑战性。然而,目前基因组学和分子生物学的发展为加速育种计划提供了有希望的途径,特别是通过包括功能基因组学在内的高通量技术。本文综述了CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9)等基因组工具,这些工具可能会给枣椰树育种带来重大变化。CRISPR-Cas9系统使科学家能够准确定位基因组区域,通过精确编辑增加优势性状,消除不利基因,有助于提高育种准确性。转录组和代谢组分析也解释了环境胁迫下数千种差异表达基因(DEGs)和代谢途径的调控。这些研究有助于提高对包括黄酮类化合物次生代谢过程在内的胁迫耐受机制的认识。基因组研究表明,北非和阿拉伯海湾品种之间基于单核苷酸多态性(SNP)的多样性为选择性育种提供了新的遗传资源。这项工作涉及全基因组关联研究(GWAS)和miRNA分析,以阐明参与果实发育和逆境抗性的关键调控网络。这些先进技术的整合,特别是CRISPR-Cas9系统的整合,正在彻底改变枣椰树育种的格局,为加速培育满足现代农业需求的优质品种开辟了新的途径。
Shaping the future of date palm (Phoenix dactylifera) through new genetic improvement strategies.
Conventional breeding of date palm (Phoenix dactylifera ) is inherently challenging due to its long generation time, dioecious nature, and high genetic heterogeneity. However, current developments in genomics and molecular biology offer promising avenues for accelerating breeding programs, particularly through high-throughput technologies including functional genomics. This article reviews genomic tools such as like CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9) that may bring significant changes in date palm breeding. The CRISPR-Cas9 system enables scientists to accurately target genomic regions, which helps enhance breeding accuracy by adding advantageous traits and eliminating unfavorable genes through precision editing. Transcriptome and metabolome analyses have also explained the regulation of thousands of differentially expressed genes (DEGs) and metabolic pathways under environmental stress. These studies contribute to enhance the knowledge of stress tolerance mechanisms, which include the secondary metabolic process of flavonoids. Genomic studies illustrating single nucleotide polymorphism (SNP)-based diversity between cultivars from north African and the Arabian Gulf provide new genetic resources for selective breeding. The work relates genome-wide association studies (GWAS) and miRNA profiling to elucidate key regulatory networks involved in fruit development and stress resilience. The integration of such advanced technologies, especially the CRISPR-Cas9 system, is revolutionizing the landscape of date palm breeding, opening new avenues for accelerated development of superior cultivars that meet the needs of modern agriculture.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.