施碘诱导生菜抗氧化防御系统,减轻盐胁迫,降低硝酸盐含量,提高生菜营养价值。

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Osama Abdelsalam Shalaby
{"title":"施碘诱导生菜抗氧化防御系统,减轻盐胁迫,降低硝酸盐含量,提高生菜营养价值。","authors":"Osama Abdelsalam Shalaby","doi":"10.1071/FP24273","DOIUrl":null,"url":null,"abstract":"<p><p>In light of climate change, improving plant resilience to abiotic stress is essential. Iodine application can improve plant tolerance to abiotic stress and provide humans with a nutritious diet rich in iodine and antioxidants. A field experiment was conducted on lettuce plants grown in a saline environment with four levels of foliar iodine spray (0, 3, 6, and 9mg/L potassium iodate). Lettuce plants respond to iodine in a concentration-dependent manner, with low iodine concentrations increasing their antioxidant capacity, reducing the amount of toxic compounds, improving their nutritional status, maintaining their physiological balance, and stimulating plant growth and yield. Conversely, high iodine levels disrupt physiological processes and reduce productivity. However, lettuce plants sprayed with 3mg/L iodine presented relatively high levels of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase), nonenzymatic antioxidants (vitamin C, proline, and phenols), chlorophyll, and nutrients, as well as relatively low levels of malondialdehyde, H2 O2 , and Na, resulting in increased head weight and total yield and reduced nitrate content. Thus, while low levels of iodine can increase plant resilience to adverse conditions such as salt stress, high levels can be detrimental, leading to reduced growth and yield. The higher the concentration of iodine used, the greater the inhibitory effect on plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants.\",\"authors\":\"Osama Abdelsalam Shalaby\",\"doi\":\"10.1071/FP24273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In light of climate change, improving plant resilience to abiotic stress is essential. Iodine application can improve plant tolerance to abiotic stress and provide humans with a nutritious diet rich in iodine and antioxidants. A field experiment was conducted on lettuce plants grown in a saline environment with four levels of foliar iodine spray (0, 3, 6, and 9mg/L potassium iodate). Lettuce plants respond to iodine in a concentration-dependent manner, with low iodine concentrations increasing their antioxidant capacity, reducing the amount of toxic compounds, improving their nutritional status, maintaining their physiological balance, and stimulating plant growth and yield. Conversely, high iodine levels disrupt physiological processes and reduce productivity. However, lettuce plants sprayed with 3mg/L iodine presented relatively high levels of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase), nonenzymatic antioxidants (vitamin C, proline, and phenols), chlorophyll, and nutrients, as well as relatively low levels of malondialdehyde, H2 O2 , and Na, resulting in increased head weight and total yield and reduced nitrate content. Thus, while low levels of iodine can increase plant resilience to adverse conditions such as salt stress, high levels can be detrimental, leading to reduced growth and yield. The higher the concentration of iodine used, the greater the inhibitory effect on plants.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24273\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24273","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

鉴于气候变化,提高植物对非生物胁迫的适应能力至关重要。碘的施用可以提高植物对非生物胁迫的耐受性,并为人类提供富含碘和抗氧化剂的营养膳食。在盐渍环境下对生菜进行了4个水平的叶面碘喷雾(0、3、6和9mg/L碘酸钾)的田间试验。生菜对碘的响应呈浓度依赖性,低碘浓度可提高生菜的抗氧化能力,减少有毒化合物的含量,改善生菜的营养状况,维持生菜的生理平衡,促进生菜的生长和产量。相反,高碘水平会扰乱生理过程,降低生产力。然而,喷施3mg/L碘的莴苣植株抗氧化酶(过氧化氢酶、超氧化物歧化酶和抗坏血酸过氧化物酶)、非酶抗氧化剂(维生素C、脯氨酸和酚类)、叶绿素和营养物质含量较高,丙二醛、H2 O2和Na含量较低,导致单株重和总产量增加,硝酸盐含量降低。因此,虽然低水平的碘可以提高植物对盐胁迫等不利条件的适应能力,但高水平的碘可能是有害的,导致生长和产量下降。碘浓度越高,对植物的抑制作用越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants.

In light of climate change, improving plant resilience to abiotic stress is essential. Iodine application can improve plant tolerance to abiotic stress and provide humans with a nutritious diet rich in iodine and antioxidants. A field experiment was conducted on lettuce plants grown in a saline environment with four levels of foliar iodine spray (0, 3, 6, and 9mg/L potassium iodate). Lettuce plants respond to iodine in a concentration-dependent manner, with low iodine concentrations increasing their antioxidant capacity, reducing the amount of toxic compounds, improving their nutritional status, maintaining their physiological balance, and stimulating plant growth and yield. Conversely, high iodine levels disrupt physiological processes and reduce productivity. However, lettuce plants sprayed with 3mg/L iodine presented relatively high levels of antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase), nonenzymatic antioxidants (vitamin C, proline, and phenols), chlorophyll, and nutrients, as well as relatively low levels of malondialdehyde, H2 O2 , and Na, resulting in increased head weight and total yield and reduced nitrate content. Thus, while low levels of iodine can increase plant resilience to adverse conditions such as salt stress, high levels can be detrimental, leading to reduced growth and yield. The higher the concentration of iodine used, the greater the inhibitory effect on plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信