中国儿童睫状体麻痹屈光不正的机器学习预测。

IF 4.6 2区 生物学 Q2 CELL BIOLOGY
Frontiers in Cell and Developmental Biology Pub Date : 2025-05-22 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1608494
Bichi Chen, Li Tian, Fuyue Tian, Qiaochu Yang, Ying Ruan, Ying Li, Min Cao, Chuanyan Wu, Maoyuan Yang, Suzhong Xu, Ruzhi Deng
{"title":"中国儿童睫状体麻痹屈光不正的机器学习预测。","authors":"Bichi Chen, Li Tian, Fuyue Tian, Qiaochu Yang, Ying Ruan, Ying Li, Min Cao, Chuanyan Wu, Maoyuan Yang, Suzhong Xu, Ruzhi Deng","doi":"10.3389/fcell.2025.1608494","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and validate machine learning (ML) models for predicting cycloplegic spherical equivalent refraction (SER) using non-cycloplegic parameters, addressing challenges in pediatric ophthalmic assessments.</p><p><strong>Methods: </strong>A prospective cohort of 2,274 Chinese children (4,548 eyes) aged 3∼16 years was stratified into development (<i>n</i> = 1819) and validation (<i>n</i> = 455) datasets. Six ML models (linear regression, random forest, extreme gradient boosting, multilayer perceptron, support vector machine, and light gradient boosting machine) were trained on demographics, non-cycloplegic refractive error, and ocular biometrics. Model performance was evaluated using <i>R</i> <sup><i>2</i></sup> , mean error (ME), mean absolute error (MAE), and clinical accuracy (proportions within ±0.50 D/±1.00 D).</p><p><strong>Results: </strong>In the validation dataset, ML models predicted cycloplegic SER with high <i>R</i> <sup><i>2</i></sup> (0.920∼0.934), low ME (-0.004∼0.015 D) and MAE (0.385∼0.413 D). The multilayer perceptron model achieved the highest accuracy (<i>R</i> <sup><i>2</i></sup> = 0.934, MAE = 0.385 D), with 73.08% and 94.29% of predictions within ±0.50 D and ±1.00 D, respectively. Performance was optimal in children aged 7∼10 years (77.17∼79.70% within ±0.50 D) and those with low myopia (-3.00 to -0.50 D; 83.09∼83.56% within ±0.50 D). Non-cycloplegic measurements systematically overestimated myopia (mean difference: -0.39 ± 0.71 D, <i>P</i> < 0.001), particularly in younger children and hyperopic eyes.</p><p><strong>Conclusion: </strong>ML models provide accurate estimates of cycloplegic SER using non-cycloplegic parameters, offering a practical alternative for pediatric refractive assessments when cycloplegia is infeasible.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1608494"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-driven prediction of cycloplegic refractive error in Chinese children.\",\"authors\":\"Bichi Chen, Li Tian, Fuyue Tian, Qiaochu Yang, Ying Ruan, Ying Li, Min Cao, Chuanyan Wu, Maoyuan Yang, Suzhong Xu, Ruzhi Deng\",\"doi\":\"10.3389/fcell.2025.1608494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and validate machine learning (ML) models for predicting cycloplegic spherical equivalent refraction (SER) using non-cycloplegic parameters, addressing challenges in pediatric ophthalmic assessments.</p><p><strong>Methods: </strong>A prospective cohort of 2,274 Chinese children (4,548 eyes) aged 3∼16 years was stratified into development (<i>n</i> = 1819) and validation (<i>n</i> = 455) datasets. Six ML models (linear regression, random forest, extreme gradient boosting, multilayer perceptron, support vector machine, and light gradient boosting machine) were trained on demographics, non-cycloplegic refractive error, and ocular biometrics. Model performance was evaluated using <i>R</i> <sup><i>2</i></sup> , mean error (ME), mean absolute error (MAE), and clinical accuracy (proportions within ±0.50 D/±1.00 D).</p><p><strong>Results: </strong>In the validation dataset, ML models predicted cycloplegic SER with high <i>R</i> <sup><i>2</i></sup> (0.920∼0.934), low ME (-0.004∼0.015 D) and MAE (0.385∼0.413 D). The multilayer perceptron model achieved the highest accuracy (<i>R</i> <sup><i>2</i></sup> = 0.934, MAE = 0.385 D), with 73.08% and 94.29% of predictions within ±0.50 D and ±1.00 D, respectively. Performance was optimal in children aged 7∼10 years (77.17∼79.70% within ±0.50 D) and those with low myopia (-3.00 to -0.50 D; 83.09∼83.56% within ±0.50 D). Non-cycloplegic measurements systematically overestimated myopia (mean difference: -0.39 ± 0.71 D, <i>P</i> < 0.001), particularly in younger children and hyperopic eyes.</p><p><strong>Conclusion: </strong>ML models provide accurate estimates of cycloplegic SER using non-cycloplegic parameters, offering a practical alternative for pediatric refractive assessments when cycloplegia is infeasible.</p>\",\"PeriodicalId\":12448,\"journal\":{\"name\":\"Frontiers in Cell and Developmental Biology\",\"volume\":\"13 \",\"pages\":\"1608494\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cell and Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fcell.2025.1608494\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1608494","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:开发和验证机器学习(ML)模型,利用非睫状体麻痹参数预测睫状体麻痹的球面等效屈光(SER),解决儿童眼科评估中的挑战。方法:对2274名年龄在3 ~ 16岁的中国儿童(4548只眼睛)进行前瞻性队列研究,分为发育数据集(n = 1819)和验证数据集(n = 455)。6个ML模型(线性回归、随机森林、极端梯度增强、多层感知器、支持向量机和光梯度增强机)在人口统计学、非睫状体屈光不正和眼部生物特征方面进行了训练。采用r2、平均误差(ME)、平均绝对误差(MAE)和临床准确度(比例在±0.50 D/±1.00 D内)评价模型性能。结果:在验证数据集中,ML模型预测的单眼瘫痪SER具有高r2(0.920 ~ 0.934)、低ME (-0.004 ~ 0.015 D)和MAE (0.385 ~ 0.413 D)。多层感知器模型的准确率最高(r2 = 0.934, MAE = 0.385 D),在±0.50 D和±1.00 D范围内的预测准确率分别为73.08%和94.29%。7 ~ 10岁儿童(77.17 ~ 79.70%在±0.50 D范围内)和低近视儿童(-3.00 ~ -0.50 D;83.09 ~ 83.56%在±0.50 D范围内)。非睫状体麻痹测量系统地高估了近视(平均差值:-0.39±0.71 D, P < 0.001),特别是在年幼儿童和远视中。结论:ML模型使用非睫状体麻痹参数提供了准确的估计睫状体麻痹SER,为不能进行睫状体麻痹的儿童屈光评估提供了实用的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-driven prediction of cycloplegic refractive error in Chinese children.

Objective: To develop and validate machine learning (ML) models for predicting cycloplegic spherical equivalent refraction (SER) using non-cycloplegic parameters, addressing challenges in pediatric ophthalmic assessments.

Methods: A prospective cohort of 2,274 Chinese children (4,548 eyes) aged 3∼16 years was stratified into development (n = 1819) and validation (n = 455) datasets. Six ML models (linear regression, random forest, extreme gradient boosting, multilayer perceptron, support vector machine, and light gradient boosting machine) were trained on demographics, non-cycloplegic refractive error, and ocular biometrics. Model performance was evaluated using R 2 , mean error (ME), mean absolute error (MAE), and clinical accuracy (proportions within ±0.50 D/±1.00 D).

Results: In the validation dataset, ML models predicted cycloplegic SER with high R 2 (0.920∼0.934), low ME (-0.004∼0.015 D) and MAE (0.385∼0.413 D). The multilayer perceptron model achieved the highest accuracy (R 2 = 0.934, MAE = 0.385 D), with 73.08% and 94.29% of predictions within ±0.50 D and ±1.00 D, respectively. Performance was optimal in children aged 7∼10 years (77.17∼79.70% within ±0.50 D) and those with low myopia (-3.00 to -0.50 D; 83.09∼83.56% within ±0.50 D). Non-cycloplegic measurements systematically overestimated myopia (mean difference: -0.39 ± 0.71 D, P < 0.001), particularly in younger children and hyperopic eyes.

Conclusion: ML models provide accurate estimates of cycloplegic SER using non-cycloplegic parameters, offering a practical alternative for pediatric refractive assessments when cycloplegia is infeasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信