Link Tejavibulya, Corey Horien, Carolyn Fredericks, Bronte Ficek, Margaret L Westwater, Dustin Scheinost
{"title":"功能连接体与偏侧性偏好的相关性:对手、脚和眼睛终生优势的洞察。","authors":"Link Tejavibulya, Corey Horien, Carolyn Fredericks, Bronte Ficek, Margaret L Westwater, Dustin Scheinost","doi":"10.1523/ENEURO.0580-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Humans exhibit laterality preferences, with handedness being the most extensively studied. Accordingly, brain-handedness associations are well documented. However, laterality preferences extend beyond handedness to include other limbs, such as footedness and eyedness. Despite these distinctions, brain-footedness and brain-eyedness associations using resting-state functional connectomes remain largely unexplored. We utilize two large datasets, the Human Connectome Project-Development (HCP-D) and Human Connectome Project-Aging (HCP-A), to study the associations between sidedness (i.e., handedness, footedness, and eyedness) and whole-brain functional connectomes. While hand and foot preferences were correlated significantly, they explained <40% of the variance, suggesting some distinctions between measures. For both cohorts, significant associations between handedness connectivity were observed [<i>p</i> < 0.05, network-based statistics (NBS) corrected]. Notable patterns include increased connectivity for left-handedness in the posterior temporal areas and right-handedness in cerebellar regions. In contrast, significant associations between footedness and handedness connectivity were observed only in the HCP-A (<i>p</i> < 0.05, NBS corrected) and not the HCP-D. No significant associations between eyedness and connectivity were observed for either group. Finally, we compared the effect size between brain-handedness and brain-footedness associations. A greater difference was found in the HCP-D. The two cohorts primarily differed in edge distribution in the prefrontal lobe, temporal lobe, and cerebellum. Overall, in adults, brain-handedness and brain-footedness associations were similar. However, in children to adolescents, brain-handedness and brain-footedness associations diverge, suggesting a developmental shift. Characterizing sidedness associations with whole-brain connectomes may provide important insights into understanding the motor and visual systems, rehabilitation and occupational therapy, and benchmarking normative variations in the connectome.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12244319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional Connectome Correlates of Laterality Preferences: Insights into Hand, Foot, and Eye Dominance across the Lifespan.\",\"authors\":\"Link Tejavibulya, Corey Horien, Carolyn Fredericks, Bronte Ficek, Margaret L Westwater, Dustin Scheinost\",\"doi\":\"10.1523/ENEURO.0580-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans exhibit laterality preferences, with handedness being the most extensively studied. Accordingly, brain-handedness associations are well documented. However, laterality preferences extend beyond handedness to include other limbs, such as footedness and eyedness. Despite these distinctions, brain-footedness and brain-eyedness associations using resting-state functional connectomes remain largely unexplored. We utilize two large datasets, the Human Connectome Project-Development (HCP-D) and Human Connectome Project-Aging (HCP-A), to study the associations between sidedness (i.e., handedness, footedness, and eyedness) and whole-brain functional connectomes. While hand and foot preferences were correlated significantly, they explained <40% of the variance, suggesting some distinctions between measures. For both cohorts, significant associations between handedness connectivity were observed [<i>p</i> < 0.05, network-based statistics (NBS) corrected]. Notable patterns include increased connectivity for left-handedness in the posterior temporal areas and right-handedness in cerebellar regions. In contrast, significant associations between footedness and handedness connectivity were observed only in the HCP-A (<i>p</i> < 0.05, NBS corrected) and not the HCP-D. No significant associations between eyedness and connectivity were observed for either group. Finally, we compared the effect size between brain-handedness and brain-footedness associations. A greater difference was found in the HCP-D. The two cohorts primarily differed in edge distribution in the prefrontal lobe, temporal lobe, and cerebellum. Overall, in adults, brain-handedness and brain-footedness associations were similar. However, in children to adolescents, brain-handedness and brain-footedness associations diverge, suggesting a developmental shift. Characterizing sidedness associations with whole-brain connectomes may provide important insights into understanding the motor and visual systems, rehabilitation and occupational therapy, and benchmarking normative variations in the connectome.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12244319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0580-24.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0580-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Functional Connectome Correlates of Laterality Preferences: Insights into Hand, Foot, and Eye Dominance across the Lifespan.
Humans exhibit laterality preferences, with handedness being the most extensively studied. Accordingly, brain-handedness associations are well documented. However, laterality preferences extend beyond handedness to include other limbs, such as footedness and eyedness. Despite these distinctions, brain-footedness and brain-eyedness associations using resting-state functional connectomes remain largely unexplored. We utilize two large datasets, the Human Connectome Project-Development (HCP-D) and Human Connectome Project-Aging (HCP-A), to study the associations between sidedness (i.e., handedness, footedness, and eyedness) and whole-brain functional connectomes. While hand and foot preferences were correlated significantly, they explained <40% of the variance, suggesting some distinctions between measures. For both cohorts, significant associations between handedness connectivity were observed [p < 0.05, network-based statistics (NBS) corrected]. Notable patterns include increased connectivity for left-handedness in the posterior temporal areas and right-handedness in cerebellar regions. In contrast, significant associations between footedness and handedness connectivity were observed only in the HCP-A (p < 0.05, NBS corrected) and not the HCP-D. No significant associations between eyedness and connectivity were observed for either group. Finally, we compared the effect size between brain-handedness and brain-footedness associations. A greater difference was found in the HCP-D. The two cohorts primarily differed in edge distribution in the prefrontal lobe, temporal lobe, and cerebellum. Overall, in adults, brain-handedness and brain-footedness associations were similar. However, in children to adolescents, brain-handedness and brain-footedness associations diverge, suggesting a developmental shift. Characterizing sidedness associations with whole-brain connectomes may provide important insights into understanding the motor and visual systems, rehabilitation and occupational therapy, and benchmarking normative variations in the connectome.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.