Yi Li, Xiang Wang, Sixian Weng, Chenxi Xia, Xuyang Meng, Chenguang Yang, Ying Guo, Zuowei Pei, Haiyang Gao, Fang Wang
{"title":"牙髓源性间充质干细胞通过miR-19a-3p/IRF-8/MAPK通路在缺血-再灌注中抑制心肌细胞焦亡。","authors":"Yi Li, Xiang Wang, Sixian Weng, Chenxi Xia, Xuyang Meng, Chenguang Yang, Ying Guo, Zuowei Pei, Haiyang Gao, Fang Wang","doi":"10.1097/CM9.0000000000003623","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.</p><p><strong>Methods: </strong>Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.</p><p><strong>Results: </strong>DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.</p><p><strong>Conclusion: </strong>DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.</p>","PeriodicalId":10183,"journal":{"name":"Chinese Medical Journal","volume":" ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.\",\"authors\":\"Yi Li, Xiang Wang, Sixian Weng, Chenxi Xia, Xuyang Meng, Chenguang Yang, Ying Guo, Zuowei Pei, Haiyang Gao, Fang Wang\",\"doi\":\"10.1097/CM9.0000000000003623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.</p><p><strong>Methods: </strong>Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.</p><p><strong>Results: </strong>DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.</p><p><strong>Conclusion: </strong>DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.</p>\",\"PeriodicalId\":10183,\"journal\":{\"name\":\"Chinese Medical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medical Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CM9.0000000000003623\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CM9.0000000000003623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Background: The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
Methods: Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
Results: DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
Conclusion: DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
期刊介绍:
The Chinese Medical Journal (CMJ) is published semimonthly in English by the Chinese Medical Association, and is a peer reviewed general medical journal for all doctors, researchers, and health workers regardless of their medical specialty or type of employment. Established in 1887, it is the oldest medical periodical in China and is distributed worldwide. The journal functions as a window into China’s medical sciences and reflects the advances and progress in China’s medical sciences and technology. It serves the objective of international academic exchange. The journal includes Original Articles, Editorial, Review Articles, Medical Progress, Brief Reports, Case Reports, Viewpoint, Clinical Exchange, Letter,and News,etc. CMJ is abstracted or indexed in many databases including Biological Abstracts, Chemical Abstracts, Index Medicus/Medline, Science Citation Index (SCI), Current Contents, Cancerlit, Health Plan & Administration, Embase, Social Scisearch, Aidsline, Toxline, Biocommercial Abstracts, Arts and Humanities Search, Nuclear Science Abstracts, Water Resources Abstracts, Cab Abstracts, Occupation Safety & Health, etc. In 2007, the impact factor of the journal by SCI is 0.636, and the total citation is 2315.