Yasser Ahmed, Ali S Alshami, Ashraf Al-Goraee, Collins P Obeng, Rebecca Kennedy, Hesham Abdelaziz, Ryan Striker
{"title":"增强骨支架制造:手工铸造和自动3D生物打印的比较研究。","authors":"Yasser Ahmed, Ali S Alshami, Ashraf Al-Goraee, Collins P Obeng, Rebecca Kennedy, Hesham Abdelaziz, Ryan Striker","doi":"10.1007/s10439-025-03752-9","DOIUrl":null,"url":null,"abstract":"<p><p>While fabrication of bone scaffolds is important for the development of tissue engineering, traditional techniques have typically been prone to either scaling or reproducibility issues. This paper highlights a strategy for automated 3D printing and bioprinting techniques that enhance precision and efficiency in the production of PLGA-HA scaffolds. We realized significant improvements in efficiency, reproducibility, and scalability through optimization of 3D printing parameters, improvement of material handling, and refinement of the fabrication process. Precise measurement consequently minimized material waste; the introduction of a mesh filter allowed for high-throughput experimentation without compromising the integrity of individual scaffolds, streamlining the workflow. Combining automated casting with state-of-the-art 3D bioprinting, our experimental methodology precisely applied the bioactive materials, reducing the processing time fivefold and enhancing precision. Besides, automated casting produced thicker, better-quality scaffolds averaging 0.02354 g, which is against 0.01169 g using the manual approach, effectively doubling the retention of the PLGA-HA coating on a PVA mold. Excellent cell viability and adhesion on automated scaffolds have been further underlined for application in tissue engineering during in vitro studies using multipotent mesenchymal stromal cells. Although conventional techniques, such as injection molding, are standard for large lots, 3D printing has advantages in scaffold fabrication regarding control over geometry and homogeneous material properties. Equally important, these characteristics are necessary to achieve repeatable and up-scaled experimental results.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Bone Scaffold Fabrication: A Comparative Study of Manual Casting and Automated 3D Bioprinting.\",\"authors\":\"Yasser Ahmed, Ali S Alshami, Ashraf Al-Goraee, Collins P Obeng, Rebecca Kennedy, Hesham Abdelaziz, Ryan Striker\",\"doi\":\"10.1007/s10439-025-03752-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While fabrication of bone scaffolds is important for the development of tissue engineering, traditional techniques have typically been prone to either scaling or reproducibility issues. This paper highlights a strategy for automated 3D printing and bioprinting techniques that enhance precision and efficiency in the production of PLGA-HA scaffolds. We realized significant improvements in efficiency, reproducibility, and scalability through optimization of 3D printing parameters, improvement of material handling, and refinement of the fabrication process. Precise measurement consequently minimized material waste; the introduction of a mesh filter allowed for high-throughput experimentation without compromising the integrity of individual scaffolds, streamlining the workflow. Combining automated casting with state-of-the-art 3D bioprinting, our experimental methodology precisely applied the bioactive materials, reducing the processing time fivefold and enhancing precision. Besides, automated casting produced thicker, better-quality scaffolds averaging 0.02354 g, which is against 0.01169 g using the manual approach, effectively doubling the retention of the PLGA-HA coating on a PVA mold. Excellent cell viability and adhesion on automated scaffolds have been further underlined for application in tissue engineering during in vitro studies using multipotent mesenchymal stromal cells. Although conventional techniques, such as injection molding, are standard for large lots, 3D printing has advantages in scaffold fabrication regarding control over geometry and homogeneous material properties. Equally important, these characteristics are necessary to achieve repeatable and up-scaled experimental results.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-025-03752-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03752-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing Bone Scaffold Fabrication: A Comparative Study of Manual Casting and Automated 3D Bioprinting.
While fabrication of bone scaffolds is important for the development of tissue engineering, traditional techniques have typically been prone to either scaling or reproducibility issues. This paper highlights a strategy for automated 3D printing and bioprinting techniques that enhance precision and efficiency in the production of PLGA-HA scaffolds. We realized significant improvements in efficiency, reproducibility, and scalability through optimization of 3D printing parameters, improvement of material handling, and refinement of the fabrication process. Precise measurement consequently minimized material waste; the introduction of a mesh filter allowed for high-throughput experimentation without compromising the integrity of individual scaffolds, streamlining the workflow. Combining automated casting with state-of-the-art 3D bioprinting, our experimental methodology precisely applied the bioactive materials, reducing the processing time fivefold and enhancing precision. Besides, automated casting produced thicker, better-quality scaffolds averaging 0.02354 g, which is against 0.01169 g using the manual approach, effectively doubling the retention of the PLGA-HA coating on a PVA mold. Excellent cell viability and adhesion on automated scaffolds have been further underlined for application in tissue engineering during in vitro studies using multipotent mesenchymal stromal cells. Although conventional techniques, such as injection molding, are standard for large lots, 3D printing has advantages in scaffold fabrication regarding control over geometry and homogeneous material properties. Equally important, these characteristics are necessary to achieve repeatable and up-scaled experimental results.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.