二硫代氨基甲酸酯对大蒜根钴致遗传毒性的保护作用研究。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Berrin Topuz, Emel Uslu
{"title":"二硫代氨基甲酸酯对大蒜根钴致遗传毒性的保护作用研究。","authors":"Berrin Topuz, Emel Uslu","doi":"10.1007/s00128-025-04067-0","DOIUrl":null,"url":null,"abstract":"<p><p>High levels of Co(NO<sub>3</sub>)<sub>2</sub> for living organisms are toxic. In this study, the protective effects of 2,6-dimethyl-morpholine dithiocarbamate (DMMDTC) against the toxicity of Co(NO<sub>3</sub>)<sub>2</sub> on Allium cepa L. were investigated. Seven groups of onion bulbs were established to investigate the potential effects of DMMDTC against Co(NO<sub>3</sub>)<sub>2</sub> exposure in root tips. These are a control group, two groups of DMMDTC alone in different concentrations, two groups of Co(NO<sub>3</sub>)<sub>2</sub> in different concentrations, and finally, two groups of combined DMMDTC (1,2) + Co (1,2) in different concentrations were applied to onion roots. The effects of the chemicals on physiological parameters, Mitotic Index (MI), Micro Nucleus (MN), genotoxicity and Co(NO<sub>3</sub>)<sub>2</sub> accumulation in the roots were examined. MI analysis revealed that Co(NO<sub>3</sub>)<sub>2</sub> treatments reduced the MI compared to water control by 52.2-46.6%, depending on the concentration. The combinations of DMMDTC + Co(NO<sub>3</sub>)<sub>2</sub> significantly increased MI while decreasing MN compared to the cobalt-only treatments. However the protective effect of DMMDTC against cobalt toxicity was limited when the data compared to the water control. The heavy damage to epidermis cells and nucleus was also observed in those cobalt applied groups. Co(NO<sub>3</sub>)<sub>2</sub> accumulation in the roots, compared to water control, was also high in Co1-Co2 groups. The DMMDTC used in this study had effects similar to those of plant extracts in reducing genotoxic effects. Therefore, the research highlights the potential benefits of using synthesized DMMDTC on Allium cepa against the toxic effects of cobalt.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 6","pages":"87"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Protective Effects of Dithiocarbamates Against Cobalt-Induced Genotoxicity in Allium cepa L. Roots.\",\"authors\":\"Berrin Topuz, Emel Uslu\",\"doi\":\"10.1007/s00128-025-04067-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High levels of Co(NO<sub>3</sub>)<sub>2</sub> for living organisms are toxic. In this study, the protective effects of 2,6-dimethyl-morpholine dithiocarbamate (DMMDTC) against the toxicity of Co(NO<sub>3</sub>)<sub>2</sub> on Allium cepa L. were investigated. Seven groups of onion bulbs were established to investigate the potential effects of DMMDTC against Co(NO<sub>3</sub>)<sub>2</sub> exposure in root tips. These are a control group, two groups of DMMDTC alone in different concentrations, two groups of Co(NO<sub>3</sub>)<sub>2</sub> in different concentrations, and finally, two groups of combined DMMDTC (1,2) + Co (1,2) in different concentrations were applied to onion roots. The effects of the chemicals on physiological parameters, Mitotic Index (MI), Micro Nucleus (MN), genotoxicity and Co(NO<sub>3</sub>)<sub>2</sub> accumulation in the roots were examined. MI analysis revealed that Co(NO<sub>3</sub>)<sub>2</sub> treatments reduced the MI compared to water control by 52.2-46.6%, depending on the concentration. The combinations of DMMDTC + Co(NO<sub>3</sub>)<sub>2</sub> significantly increased MI while decreasing MN compared to the cobalt-only treatments. However the protective effect of DMMDTC against cobalt toxicity was limited when the data compared to the water control. The heavy damage to epidermis cells and nucleus was also observed in those cobalt applied groups. Co(NO<sub>3</sub>)<sub>2</sub> accumulation in the roots, compared to water control, was also high in Co1-Co2 groups. The DMMDTC used in this study had effects similar to those of plant extracts in reducing genotoxic effects. Therefore, the research highlights the potential benefits of using synthesized DMMDTC on Allium cepa against the toxic effects of cobalt.</p>\",\"PeriodicalId\":501,\"journal\":{\"name\":\"Bulletin of Environmental Contamination and Toxicology\",\"volume\":\"114 6\",\"pages\":\"87\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00128-025-04067-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04067-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高浓度的Co(NO3)2对生物体是有毒的。研究了2,6-二甲基-啉二硫代氨基甲酸酯(DMMDTC)对Co(NO3)2对葱(Allium cepa L.)毒性的保护作用。以7组洋葱为材料,研究DMMDTC对Co(NO3)2在根尖暴露的潜在影响。分别为对照组、两组不同浓度的DMMDTC单独施用、两组不同浓度的Co(NO3)2施用、最后两组不同浓度的DMMDTC (1,2) + Co(1,2)联合施用。研究了不同化学物质对根系生理参数、有丝分裂指数(MI)、微核(MN)、遗传毒性和Co(NO3)2积累的影响。MI分析显示,Co(NO3)2处理与水对照相比,MI降低了52.2-46.6%(取决于浓度)。与单纯钴治疗相比,DMMDTC + Co(NO3)2联合治疗显著增加心肌梗死,降低心肌梗死。然而,与水控制相比,DMMDTC对钴毒性的保护作用有限。钴处理组表皮细胞和细胞核均有明显损伤。Co(NO3)2在根系中的积累量,与水分对照相比,在Co1-Co2组中也较高。本研究中使用的DMMDTC具有与植物提取物相似的降低基因毒性作用的作用。因此,本研究强调了在大蒜上使用合成的DMMDTC来对抗钴的毒性作用的潜在益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the Protective Effects of Dithiocarbamates Against Cobalt-Induced Genotoxicity in Allium cepa L. Roots.

High levels of Co(NO3)2 for living organisms are toxic. In this study, the protective effects of 2,6-dimethyl-morpholine dithiocarbamate (DMMDTC) against the toxicity of Co(NO3)2 on Allium cepa L. were investigated. Seven groups of onion bulbs were established to investigate the potential effects of DMMDTC against Co(NO3)2 exposure in root tips. These are a control group, two groups of DMMDTC alone in different concentrations, two groups of Co(NO3)2 in different concentrations, and finally, two groups of combined DMMDTC (1,2) + Co (1,2) in different concentrations were applied to onion roots. The effects of the chemicals on physiological parameters, Mitotic Index (MI), Micro Nucleus (MN), genotoxicity and Co(NO3)2 accumulation in the roots were examined. MI analysis revealed that Co(NO3)2 treatments reduced the MI compared to water control by 52.2-46.6%, depending on the concentration. The combinations of DMMDTC + Co(NO3)2 significantly increased MI while decreasing MN compared to the cobalt-only treatments. However the protective effect of DMMDTC against cobalt toxicity was limited when the data compared to the water control. The heavy damage to epidermis cells and nucleus was also observed in those cobalt applied groups. Co(NO3)2 accumulation in the roots, compared to water control, was also high in Co1-Co2 groups. The DMMDTC used in this study had effects similar to those of plant extracts in reducing genotoxic effects. Therefore, the research highlights the potential benefits of using synthesized DMMDTC on Allium cepa against the toxic effects of cobalt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信