So Young Choi, Jieun Kim, Eun Ho Song, Eunhye Park, Jingrui Wu, Juyeon Yoo, Jwa-Min Nam
{"title":"dna介导的动态可重构等离子体金纳米结构的设计、机制和应用。","authors":"So Young Choi, Jieun Kim, Eun Ho Song, Eunhye Park, Jingrui Wu, Juyeon Yoo, Jwa-Min Nam","doi":"10.1002/smtd.202500448","DOIUrl":null,"url":null,"abstract":"<p><p>Unlike the fixed formations of static gold nanostructures (AuNSs), reconfigurable AuNSs offer versatility when designing nanomaterials and biosensors because they can dynamically respond to external stimuli in a tunable manner. These dynamic systems enable in situ reaction monitoring and cyclic switching functions. An appropriate design of the architecture of the nanostructures is crucial because it dictates the operational principles of the system. This review explores the design and working principles of reconfigurable gold-based plasmonic nanostructures by modulating highly programmable DNA and through chemical and physical stimuli such as temperature, light, pH, and metal ions. Methods are discussed to control these factors and use them as actuation handles for affecting the reconfigurability of these structures. In addition, the utilization of these properties and functions in bio-applications and functional hybrid materials is illustrated, which demonstrates the practical applications of reconfigurable AuNSs in advanced materials science and biomedicine.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500448"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Mechanisms, and Applications of DNA-Mediated Dynamically Reconfigurable Plasmonic Gold Nanostructures.\",\"authors\":\"So Young Choi, Jieun Kim, Eun Ho Song, Eunhye Park, Jingrui Wu, Juyeon Yoo, Jwa-Min Nam\",\"doi\":\"10.1002/smtd.202500448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unlike the fixed formations of static gold nanostructures (AuNSs), reconfigurable AuNSs offer versatility when designing nanomaterials and biosensors because they can dynamically respond to external stimuli in a tunable manner. These dynamic systems enable in situ reaction monitoring and cyclic switching functions. An appropriate design of the architecture of the nanostructures is crucial because it dictates the operational principles of the system. This review explores the design and working principles of reconfigurable gold-based plasmonic nanostructures by modulating highly programmable DNA and through chemical and physical stimuli such as temperature, light, pH, and metal ions. Methods are discussed to control these factors and use them as actuation handles for affecting the reconfigurability of these structures. In addition, the utilization of these properties and functions in bio-applications and functional hybrid materials is illustrated, which demonstrates the practical applications of reconfigurable AuNSs in advanced materials science and biomedicine.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2500448\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202500448\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500448","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design, Mechanisms, and Applications of DNA-Mediated Dynamically Reconfigurable Plasmonic Gold Nanostructures.
Unlike the fixed formations of static gold nanostructures (AuNSs), reconfigurable AuNSs offer versatility when designing nanomaterials and biosensors because they can dynamically respond to external stimuli in a tunable manner. These dynamic systems enable in situ reaction monitoring and cyclic switching functions. An appropriate design of the architecture of the nanostructures is crucial because it dictates the operational principles of the system. This review explores the design and working principles of reconfigurable gold-based plasmonic nanostructures by modulating highly programmable DNA and through chemical and physical stimuli such as temperature, light, pH, and metal ions. Methods are discussed to control these factors and use them as actuation handles for affecting the reconfigurability of these structures. In addition, the utilization of these properties and functions in bio-applications and functional hybrid materials is illustrated, which demonstrates the practical applications of reconfigurable AuNSs in advanced materials science and biomedicine.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.