{"title":"阐明动力学控制分子组装过程的动力学网络模型。","authors":"Lingyu Zhang, Yijia Wang, Xiaoyan Zheng","doi":"10.1002/asia.202500283","DOIUrl":null,"url":null,"abstract":"<p><p>Organic molecular assembly is a fundamental protocol for constructing organic functional materials at time and length scales beyond individual molecules. Following a bottom-up strategy, organic nanostructures with diverse morphologies and specific functionalities could be obtained. However, the flexible conformations and the cooperative interplay of different noncovalent interactions, lead to countless kinetically metastable states and make the precise prediction of assembled nanostructures extremely challenging. In this review, the theoretical backgrounds and a general theoretical protocol of kinetic network models (KNMs) are first introduced. Then, the molecular assembly mechanism and its regulation are presented for various molecular assembly systems ranging from small molecules (e.g., surfactants, lipids, metal complexes, and ice nuclei) to block copolymers and patchy particles, and further to peptides. For each assembly system, the distribution of metastable structures and the kinetically assembled pathways of the assembly process, as well as the relationship between kinetic pathways preferences and the finally assembled nanostructures are presented. Therefore, it is crucial for a deeper understanding of assembly mechanism and it paves an effective way for the precise control of assembled nanostructures kinetically, which benefits the fabrication of advanced organic functional materials.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00283"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Network Models to Elucidate the Kinetic-Controlled Molecular Assembly Processes.\",\"authors\":\"Lingyu Zhang, Yijia Wang, Xiaoyan Zheng\",\"doi\":\"10.1002/asia.202500283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic molecular assembly is a fundamental protocol for constructing organic functional materials at time and length scales beyond individual molecules. Following a bottom-up strategy, organic nanostructures with diverse morphologies and specific functionalities could be obtained. However, the flexible conformations and the cooperative interplay of different noncovalent interactions, lead to countless kinetically metastable states and make the precise prediction of assembled nanostructures extremely challenging. In this review, the theoretical backgrounds and a general theoretical protocol of kinetic network models (KNMs) are first introduced. Then, the molecular assembly mechanism and its regulation are presented for various molecular assembly systems ranging from small molecules (e.g., surfactants, lipids, metal complexes, and ice nuclei) to block copolymers and patchy particles, and further to peptides. For each assembly system, the distribution of metastable structures and the kinetically assembled pathways of the assembly process, as well as the relationship between kinetic pathways preferences and the finally assembled nanostructures are presented. Therefore, it is crucial for a deeper understanding of assembly mechanism and it paves an effective way for the precise control of assembled nanostructures kinetically, which benefits the fabrication of advanced organic functional materials.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e00283\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202500283\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500283","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetic Network Models to Elucidate the Kinetic-Controlled Molecular Assembly Processes.
Organic molecular assembly is a fundamental protocol for constructing organic functional materials at time and length scales beyond individual molecules. Following a bottom-up strategy, organic nanostructures with diverse morphologies and specific functionalities could be obtained. However, the flexible conformations and the cooperative interplay of different noncovalent interactions, lead to countless kinetically metastable states and make the precise prediction of assembled nanostructures extremely challenging. In this review, the theoretical backgrounds and a general theoretical protocol of kinetic network models (KNMs) are first introduced. Then, the molecular assembly mechanism and its regulation are presented for various molecular assembly systems ranging from small molecules (e.g., surfactants, lipids, metal complexes, and ice nuclei) to block copolymers and patchy particles, and further to peptides. For each assembly system, the distribution of metastable structures and the kinetically assembled pathways of the assembly process, as well as the relationship between kinetic pathways preferences and the finally assembled nanostructures are presented. Therefore, it is crucial for a deeper understanding of assembly mechanism and it paves an effective way for the precise control of assembled nanostructures kinetically, which benefits the fabrication of advanced organic functional materials.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).