{"title":"有机-无机杂化钙钛矿的声子驱动铁电和拉曼活性模式。","authors":"Chuanzhao Li, Shurong Yuan, Yixin Li, Zhenyue Wu, Yuanyuan Jin, Kian Ping Loh, Kai Leng","doi":"10.1002/adma.202419685","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid organic-inorganic perovskites (HOIPs) have emerged as promising ferroelectric semiconductors, yet the phonon signatures governing their ferroelectricity remain poorly understood. Here, by analyzing the temperature-dependent Raman peak profiles of highly ordered ferroelectric domains in HOIPs, a framework to systematically investigate the dimensionality (n)-dependent phonons that are critical to ferroelectric behaviour is established. By tracking phonon evolution across the ferroelectric-to-paraelectric phase transition in HOIPs with different n, characteristic modes associated with the ferroelectric symmetry-breaking process are identified. Notably, in the ferroelectric phase of (BA)<sub>2</sub>(MA)<sub>2</sub>Pb<sub>3</sub>Br<sub>10</sub> (n = 3), these modes exhibit a redshift compared to those in (BA)<sub>2</sub>(MA)Pb<sub>2</sub>Br<sub>7</sub> (n = 2), reflecting a reduced energy barrier for ferroelectric switching. Density functional theory (DFT) calculations further correlate these modes with their spectral signatures in Raman spectroscopy, particularly highlighting zone-boundary modes that diminish upon transitioning to the paraelectric phase. Polarized Raman mapping further reveals adjacent ferroelectric domains with orthogonal polarization orientations, directly linking phonon activity to domain configuration. This work elucidates the role of phonons in HOIP ferroelectricity, offering insights for tailoring domain-related properties in ferroelectric devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2419685"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phonon Driven Ferroelectricity and Raman Active Modes in Hybrid Organic-Inorganic Perovskites.\",\"authors\":\"Chuanzhao Li, Shurong Yuan, Yixin Li, Zhenyue Wu, Yuanyuan Jin, Kian Ping Loh, Kai Leng\",\"doi\":\"10.1002/adma.202419685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybrid organic-inorganic perovskites (HOIPs) have emerged as promising ferroelectric semiconductors, yet the phonon signatures governing their ferroelectricity remain poorly understood. Here, by analyzing the temperature-dependent Raman peak profiles of highly ordered ferroelectric domains in HOIPs, a framework to systematically investigate the dimensionality (n)-dependent phonons that are critical to ferroelectric behaviour is established. By tracking phonon evolution across the ferroelectric-to-paraelectric phase transition in HOIPs with different n, characteristic modes associated with the ferroelectric symmetry-breaking process are identified. Notably, in the ferroelectric phase of (BA)<sub>2</sub>(MA)<sub>2</sub>Pb<sub>3</sub>Br<sub>10</sub> (n = 3), these modes exhibit a redshift compared to those in (BA)<sub>2</sub>(MA)Pb<sub>2</sub>Br<sub>7</sub> (n = 2), reflecting a reduced energy barrier for ferroelectric switching. Density functional theory (DFT) calculations further correlate these modes with their spectral signatures in Raman spectroscopy, particularly highlighting zone-boundary modes that diminish upon transitioning to the paraelectric phase. Polarized Raman mapping further reveals adjacent ferroelectric domains with orthogonal polarization orientations, directly linking phonon activity to domain configuration. This work elucidates the role of phonons in HOIP ferroelectricity, offering insights for tailoring domain-related properties in ferroelectric devices.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2419685\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202419685\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202419685","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Phonon Driven Ferroelectricity and Raman Active Modes in Hybrid Organic-Inorganic Perovskites.
Hybrid organic-inorganic perovskites (HOIPs) have emerged as promising ferroelectric semiconductors, yet the phonon signatures governing their ferroelectricity remain poorly understood. Here, by analyzing the temperature-dependent Raman peak profiles of highly ordered ferroelectric domains in HOIPs, a framework to systematically investigate the dimensionality (n)-dependent phonons that are critical to ferroelectric behaviour is established. By tracking phonon evolution across the ferroelectric-to-paraelectric phase transition in HOIPs with different n, characteristic modes associated with the ferroelectric symmetry-breaking process are identified. Notably, in the ferroelectric phase of (BA)2(MA)2Pb3Br10 (n = 3), these modes exhibit a redshift compared to those in (BA)2(MA)Pb2Br7 (n = 2), reflecting a reduced energy barrier for ferroelectric switching. Density functional theory (DFT) calculations further correlate these modes with their spectral signatures in Raman spectroscopy, particularly highlighting zone-boundary modes that diminish upon transitioning to the paraelectric phase. Polarized Raman mapping further reveals adjacent ferroelectric domains with orthogonal polarization orientations, directly linking phonon activity to domain configuration. This work elucidates the role of phonons in HOIP ferroelectricity, offering insights for tailoring domain-related properties in ferroelectric devices.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.