Nimish P Nazirkar, Viet Tran, Pascal Bassène, Atoumane Ndiaye, Julie Barringer, Jie Jiang, Wonsuk Cha, Ross Harder, Jian Shi, Moussa N'Gom, Edwin Fohtung
{"title":"用扭曲光操纵铁电拓扑极性结构。","authors":"Nimish P Nazirkar, Viet Tran, Pascal Bassène, Atoumane Ndiaye, Julie Barringer, Jie Jiang, Wonsuk Cha, Ross Harder, Jian Shi, Moussa N'Gom, Edwin Fohtung","doi":"10.1002/adma.202415231","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNb<sub>2</sub>O<sub>7</sub> (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2415231"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulating Ferroelectric Topological Polar Structures with Twisted Light.\",\"authors\":\"Nimish P Nazirkar, Viet Tran, Pascal Bassène, Atoumane Ndiaye, Julie Barringer, Jie Jiang, Wonsuk Cha, Ross Harder, Jian Shi, Moussa N'Gom, Edwin Fohtung\",\"doi\":\"10.1002/adma.202415231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNb<sub>2</sub>O<sub>7</sub> (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2415231\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202415231\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415231","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulating Ferroelectric Topological Polar Structures with Twisted Light.
The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNb2O7 (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.