T. Yu. Kirila, N. D. Kozina, M. A. Golovina, M. P. Sokolova, A. V. Tenkovtsev and A. P. Filippov
{"title":"聚2-异丙基-2-恶唑啉:构象特征、LCST行为及与姜黄素的络合作用。","authors":"T. Yu. Kirila, N. D. Kozina, M. A. Golovina, M. P. Sokolova, A. V. Tenkovtsev and A. P. Filippov","doi":"10.1039/D5SM00337G","DOIUrl":null,"url":null,"abstract":"<p >A homologous series of thermoresponsive poly-2-isopropyl-2-oxazolines were synthesized using living cationic ring-opening polymerization. The molar mass and hydrodynamic characteristics of poly-2-isopropyl-2-oxazolines were determined using methods of molecular hydrodynamics and optics in dilute ethanol solutions. The molar masses of the samples varied almost tenfold (2600–22 100 g mol<small><sup>−1</sup></small>). For poly-2-isopropyl-2-oxazolines, the exponents in the Kuhn–Mark–Houwink–Sakurada equations for intrinsic viscosity (0.54) and translational friction coefficient (0.53) were typical for flexible-chain polymers. The equilibrium rigidity of poly-2-isopropyl-2-oxazolines (Kuhn segment length was 2.0 nm) was determined by analyzing the hydrodynamic characteristics using theories that take into account volume effects in thermodynamically good solvents. It was shown that the rigidity of poly-2-alkyl-2-oxazolines increases with the growth of the size of the side radical, even when the carbon atom number in the latter is not large. In aqueous solutions, poly-2-isopropyl-2-oxazolines exhibited LCST behavior. Phase separation temperature and LCST decreased with increasing molar mass due to the growth of polymer hydrophobicity. The highly efficient binding of curcumin by poly-2-isopropyl-2-oxazoline in aqueous solutions was observed. Stable complexes of poly-2-isopropyl-2-oxazolines with curcumin were formed in water. Solutions of complexes were thermoresponsive, and the addition of curcumin did not change the phase separation temperature since the curcumin content was very low.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 25","pages":" 5117-5127"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-2-isopropyl-2-oxazoline: conformational characteristics, LCST behavior and complexation with curcumin†\",\"authors\":\"T. Yu. Kirila, N. D. Kozina, M. A. Golovina, M. P. Sokolova, A. V. Tenkovtsev and A. P. Filippov\",\"doi\":\"10.1039/D5SM00337G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A homologous series of thermoresponsive poly-2-isopropyl-2-oxazolines were synthesized using living cationic ring-opening polymerization. The molar mass and hydrodynamic characteristics of poly-2-isopropyl-2-oxazolines were determined using methods of molecular hydrodynamics and optics in dilute ethanol solutions. The molar masses of the samples varied almost tenfold (2600–22 100 g mol<small><sup>−1</sup></small>). For poly-2-isopropyl-2-oxazolines, the exponents in the Kuhn–Mark–Houwink–Sakurada equations for intrinsic viscosity (0.54) and translational friction coefficient (0.53) were typical for flexible-chain polymers. The equilibrium rigidity of poly-2-isopropyl-2-oxazolines (Kuhn segment length was 2.0 nm) was determined by analyzing the hydrodynamic characteristics using theories that take into account volume effects in thermodynamically good solvents. It was shown that the rigidity of poly-2-alkyl-2-oxazolines increases with the growth of the size of the side radical, even when the carbon atom number in the latter is not large. In aqueous solutions, poly-2-isopropyl-2-oxazolines exhibited LCST behavior. Phase separation temperature and LCST decreased with increasing molar mass due to the growth of polymer hydrophobicity. The highly efficient binding of curcumin by poly-2-isopropyl-2-oxazoline in aqueous solutions was observed. Stable complexes of poly-2-isopropyl-2-oxazolines with curcumin were formed in water. Solutions of complexes were thermoresponsive, and the addition of curcumin did not change the phase separation temperature since the curcumin content was very low.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 25\",\"pages\":\" 5117-5127\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00337g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00337g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Poly-2-isopropyl-2-oxazoline: conformational characteristics, LCST behavior and complexation with curcumin†
A homologous series of thermoresponsive poly-2-isopropyl-2-oxazolines were synthesized using living cationic ring-opening polymerization. The molar mass and hydrodynamic characteristics of poly-2-isopropyl-2-oxazolines were determined using methods of molecular hydrodynamics and optics in dilute ethanol solutions. The molar masses of the samples varied almost tenfold (2600–22 100 g mol−1). For poly-2-isopropyl-2-oxazolines, the exponents in the Kuhn–Mark–Houwink–Sakurada equations for intrinsic viscosity (0.54) and translational friction coefficient (0.53) were typical for flexible-chain polymers. The equilibrium rigidity of poly-2-isopropyl-2-oxazolines (Kuhn segment length was 2.0 nm) was determined by analyzing the hydrodynamic characteristics using theories that take into account volume effects in thermodynamically good solvents. It was shown that the rigidity of poly-2-alkyl-2-oxazolines increases with the growth of the size of the side radical, even when the carbon atom number in the latter is not large. In aqueous solutions, poly-2-isopropyl-2-oxazolines exhibited LCST behavior. Phase separation temperature and LCST decreased with increasing molar mass due to the growth of polymer hydrophobicity. The highly efficient binding of curcumin by poly-2-isopropyl-2-oxazoline in aqueous solutions was observed. Stable complexes of poly-2-isopropyl-2-oxazolines with curcumin were formed in water. Solutions of complexes were thermoresponsive, and the addition of curcumin did not change the phase separation temperature since the curcumin content was very low.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.