WS2/MoS2单层膜层间耦合的扰动工程。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2025-06-18 Epub Date: 2025-06-06 DOI:10.1021/acs.nanolett.5c01539
Linglong Zhang, Masab Rafique, Jian Kang, Zhenliang Hu, Mengfei Ji, Xueqian Sun, Tong Tong, Han Yan, Haizeng Song, Siyuan Chang, Chengcai Zhu, Jiong Yang, Jiajie Pei, Youwen Liu, Dongke Li, Yuerui Lu, Yi Shi
{"title":"WS2/MoS2单层膜层间耦合的扰动工程。","authors":"Linglong Zhang, Masab Rafique, Jian Kang, Zhenliang Hu, Mengfei Ji, Xueqian Sun, Tong Tong, Han Yan, Haizeng Song, Siyuan Chang, Chengcai Zhu, Jiong Yang, Jiajie Pei, Youwen Liu, Dongke Li, Yuerui Lu, Yi Shi","doi":"10.1021/acs.nanolett.5c01539","DOIUrl":null,"url":null,"abstract":"<p><p>Moiré superlattices enable the modification of electronic band structures and material properties by tuning interlayer couplings, holding great potential for designing multifunctional optoelectronic devices in color tuning, light harvesting, and light generation. While theoretical predictions suggest that moiré potentials can control interlayer couplings in heterostructures, experimental realizations remain challenging due to difficulties in dynamically manipulating moiré potentials. Here we systematically modify interlayer couplings in a WS<sub>2</sub>/MoS<sub>2</sub> heterobilayer by adjusting the excitation power and gate voltage to control moiré potentials. Increasing excitation power reduces the effective moiré potentials by influencing the filling of moiré traps, which suppress interlayer charge transfers and the <i>p</i>-doping effect on the WS<sub>2</sub> from the heterostructure. Additionally, power-dependent PL measurements at varying gate voltages demonstrate a prominent decrease in the heterostructure's sublinear slope, from 0.63 (no voltage) to 0.52 (<i>V</i><sub>G</sub> = 50 V), indicating enhanced moiré localization effects. This observation is verified by theoretical simulations of gate-tuned moiré potentials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"9662-9669"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moiré Engineering of Interlayer Coupling in WS<sub>2</sub>/MoS<sub>2</sub> Monolayers.\",\"authors\":\"Linglong Zhang, Masab Rafique, Jian Kang, Zhenliang Hu, Mengfei Ji, Xueqian Sun, Tong Tong, Han Yan, Haizeng Song, Siyuan Chang, Chengcai Zhu, Jiong Yang, Jiajie Pei, Youwen Liu, Dongke Li, Yuerui Lu, Yi Shi\",\"doi\":\"10.1021/acs.nanolett.5c01539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moiré superlattices enable the modification of electronic band structures and material properties by tuning interlayer couplings, holding great potential for designing multifunctional optoelectronic devices in color tuning, light harvesting, and light generation. While theoretical predictions suggest that moiré potentials can control interlayer couplings in heterostructures, experimental realizations remain challenging due to difficulties in dynamically manipulating moiré potentials. Here we systematically modify interlayer couplings in a WS<sub>2</sub>/MoS<sub>2</sub> heterobilayer by adjusting the excitation power and gate voltage to control moiré potentials. Increasing excitation power reduces the effective moiré potentials by influencing the filling of moiré traps, which suppress interlayer charge transfers and the <i>p</i>-doping effect on the WS<sub>2</sub> from the heterostructure. Additionally, power-dependent PL measurements at varying gate voltages demonstrate a prominent decrease in the heterostructure's sublinear slope, from 0.63 (no voltage) to 0.52 (<i>V</i><sub>G</sub> = 50 V), indicating enhanced moiré localization effects. This observation is verified by theoretical simulations of gate-tuned moiré potentials.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"9662-9669\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01539\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01539","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

moir超晶格可以通过调节层间耦合来改变电子能带结构和材料性质,在设计色彩调谐、光收集和光产生等多功能光电器件方面具有很大的潜力。虽然理论预测表明莫尔莫尔势可以控制异质结构中的层间耦合,但由于动态操纵莫尔莫尔势的困难,实验实现仍然具有挑战性。本文系统地通过调节激励功率和栅极电压来调节WS2/MoS2异质层的层间耦合,从而控制摩尔势。激发功率的增加通过影响莫尔阱的填充来降低有效莫尔阱势,从而抑制层间电荷转移和p掺杂对WS2的影响。此外,在不同栅极电压下的功率相关PL测量表明,异质结构的亚线性斜率显著降低,从0.63(无电压)降至0.52 (VG = 50 V),表明增强的moir局域化效应。这一观察结果被门调谐的莫尔莫尔势的理论模拟所证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moiré Engineering of Interlayer Coupling in WS<sub>2</sub>/MoS<sub>2</sub> Monolayers.

Moiré Engineering of Interlayer Coupling in WS2/MoS2 Monolayers.

Moiré superlattices enable the modification of electronic band structures and material properties by tuning interlayer couplings, holding great potential for designing multifunctional optoelectronic devices in color tuning, light harvesting, and light generation. While theoretical predictions suggest that moiré potentials can control interlayer couplings in heterostructures, experimental realizations remain challenging due to difficulties in dynamically manipulating moiré potentials. Here we systematically modify interlayer couplings in a WS2/MoS2 heterobilayer by adjusting the excitation power and gate voltage to control moiré potentials. Increasing excitation power reduces the effective moiré potentials by influencing the filling of moiré traps, which suppress interlayer charge transfers and the p-doping effect on the WS2 from the heterostructure. Additionally, power-dependent PL measurements at varying gate voltages demonstrate a prominent decrease in the heterostructure's sublinear slope, from 0.63 (no voltage) to 0.52 (VG = 50 V), indicating enhanced moiré localization effects. This observation is verified by theoretical simulations of gate-tuned moiré potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信