热响应,尺寸可调杂化纳米胶束缓解肿瘤缺氧和增强化学-光热协同治疗癌症。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Danjun Wu, Yaning Ji, Weili Ji, Hong Tian, Yiwei Dai, Yifei Chen, Gongmin Shen* and Gensheng Yang*, 
{"title":"热响应,尺寸可调杂化纳米胶束缓解肿瘤缺氧和增强化学-光热协同治疗癌症。","authors":"Danjun Wu,&nbsp;Yaning Ji,&nbsp;Weili Ji,&nbsp;Hong Tian,&nbsp;Yiwei Dai,&nbsp;Yifei Chen,&nbsp;Gongmin Shen* and Gensheng Yang*,&nbsp;","doi":"10.1021/acs.biomac.5c00186","DOIUrl":null,"url":null,"abstract":"<p >Nanomedicines with a size of approximately 200 nm preferentially accumulate at the tumor peripheries but exhibit limited penetration into deeper hypoxic regions. To overcome this, we engineered near-infrared (NIR) light-triggered, size-tunable nanomicelles (Au@PtNRs/DOX-M) to enhance tumor accumulation and penetration, while alleviating hypoxia. Dumbbell-shaped platinum-deposited gold nanorods (Au@PtNRs), with a high photothermal conversion efficiency (68.44%), were integrated into thermoresponsive, doxorubicin (DOX)-loaded nanomicelles. Upon NIR irradiation, Au@PtNRs induced light-to-heat conversion, disassembling micelles into ultrasmall micelles for enhanced tumor penetration and on-demand DOX release. Concurrently, Pt nanoparticles catalyzed the decomposition of reactive oxygen species (ROS) to mitigate ROS-induced damage to adjacent healthy cells, and scavenged the elevated H<sub>2</sub>O<sub>2</sub> within tumors, generating abundant oxygen to reoxygenate the hypoxic microenvironment. This study establishes an efficient, size-tunable nanomicelle platform for enhancing hypoxia-impeded deep penetration of nanomedicines and offers a promising strategy for synergistic chemo-photothermal therapy, achieving tumor inhibition rates of up to 99% in MCF-7 tumor-bearing mice.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 7","pages":"4184–4196"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoresponsive, Size-Tunable Hybrid Nanomicelles to Alleviate Tumor Hypoxia and Enhance Chemo-Photothermal Synergy Therapy of Cancer\",\"authors\":\"Danjun Wu,&nbsp;Yaning Ji,&nbsp;Weili Ji,&nbsp;Hong Tian,&nbsp;Yiwei Dai,&nbsp;Yifei Chen,&nbsp;Gongmin Shen* and Gensheng Yang*,&nbsp;\",\"doi\":\"10.1021/acs.biomac.5c00186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanomedicines with a size of approximately 200 nm preferentially accumulate at the tumor peripheries but exhibit limited penetration into deeper hypoxic regions. To overcome this, we engineered near-infrared (NIR) light-triggered, size-tunable nanomicelles (Au@PtNRs/DOX-M) to enhance tumor accumulation and penetration, while alleviating hypoxia. Dumbbell-shaped platinum-deposited gold nanorods (Au@PtNRs), with a high photothermal conversion efficiency (68.44%), were integrated into thermoresponsive, doxorubicin (DOX)-loaded nanomicelles. Upon NIR irradiation, Au@PtNRs induced light-to-heat conversion, disassembling micelles into ultrasmall micelles for enhanced tumor penetration and on-demand DOX release. Concurrently, Pt nanoparticles catalyzed the decomposition of reactive oxygen species (ROS) to mitigate ROS-induced damage to adjacent healthy cells, and scavenged the elevated H<sub>2</sub>O<sub>2</sub> within tumors, generating abundant oxygen to reoxygenate the hypoxic microenvironment. This study establishes an efficient, size-tunable nanomicelle platform for enhancing hypoxia-impeded deep penetration of nanomedicines and offers a promising strategy for synergistic chemo-photothermal therapy, achieving tumor inhibition rates of up to 99% in MCF-7 tumor-bearing mice.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 7\",\"pages\":\"4184–4196\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00186\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c00186","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尺寸约为200nm的纳米药物优先在肿瘤周围积聚,但对更深的缺氧区域的渗透有限。为了克服这一问题,我们设计了近红外(NIR)光触发、尺寸可调的纳米胶束(Au@PtNRs/DOX-M),以促进肿瘤的积累和渗透,同时缓解缺氧。将具有高光热转换效率(68.44%)的哑铃形铂沉积金纳米棒(Au@PtNRs)集成到负载阿霉素(DOX)的热响应纳米胶束中。在近红外照射下,Au@PtNRs诱导光热转换,将胶束分解成超小胶束,以增强肿瘤穿透和按需释放DOX。同时,Pt纳米颗粒催化活性氧(ROS)的分解,减轻ROS对邻近健康细胞的损伤,清除肿瘤内升高的H2O2,产生丰富的氧气,对缺氧微环境进行再氧。本研究建立了一个有效的、可调节大小的纳米胶束平台,用于增强低氧阻碍纳米药物的深度渗透,并为化学-光热协同治疗提供了一个有前途的策略,在MCF-7肿瘤小鼠中实现了高达99%的肿瘤抑制率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermoresponsive, Size-Tunable Hybrid Nanomicelles to Alleviate Tumor Hypoxia and Enhance Chemo-Photothermal Synergy Therapy of Cancer

Thermoresponsive, Size-Tunable Hybrid Nanomicelles to Alleviate Tumor Hypoxia and Enhance Chemo-Photothermal Synergy Therapy of Cancer

Nanomedicines with a size of approximately 200 nm preferentially accumulate at the tumor peripheries but exhibit limited penetration into deeper hypoxic regions. To overcome this, we engineered near-infrared (NIR) light-triggered, size-tunable nanomicelles (Au@PtNRs/DOX-M) to enhance tumor accumulation and penetration, while alleviating hypoxia. Dumbbell-shaped platinum-deposited gold nanorods (Au@PtNRs), with a high photothermal conversion efficiency (68.44%), were integrated into thermoresponsive, doxorubicin (DOX)-loaded nanomicelles. Upon NIR irradiation, Au@PtNRs induced light-to-heat conversion, disassembling micelles into ultrasmall micelles for enhanced tumor penetration and on-demand DOX release. Concurrently, Pt nanoparticles catalyzed the decomposition of reactive oxygen species (ROS) to mitigate ROS-induced damage to adjacent healthy cells, and scavenged the elevated H2O2 within tumors, generating abundant oxygen to reoxygenate the hypoxic microenvironment. This study establishes an efficient, size-tunable nanomicelle platform for enhancing hypoxia-impeded deep penetration of nanomedicines and offers a promising strategy for synergistic chemo-photothermal therapy, achieving tumor inhibition rates of up to 99% in MCF-7 tumor-bearing mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信