通过自由基-自由基反应诱导环扩张气相合成蒽和菲

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shane J. Goettl, Andrew M. Turner, Vladislav S. Krasnoukhov, Valeriy N. Azyazov, Keisuke Kanayama, Patrick Hemberger, Alexander M. Mebel, Ralf I. Kaiser
{"title":"通过自由基-自由基反应诱导环扩张气相合成蒽和菲","authors":"Shane J. Goettl,&nbsp;Andrew M. Turner,&nbsp;Vladislav S. Krasnoukhov,&nbsp;Valeriy N. Azyazov,&nbsp;Keisuke Kanayama,&nbsp;Patrick Hemberger,&nbsp;Alexander M. Mebel,&nbsp;Ralf I. Kaiser","doi":"10.1126/sciadv.adv0692","DOIUrl":null,"url":null,"abstract":"<div >Unraveling reaction mechanisms of aromatic and resonance-stabilized radicals is critical to understanding molecular mass growth processes to polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanoparticles in distinct astrophysical environments (molecular clouds, circumstellar envelopes) and combustion systems. Using photoelectron photoion coincidence spectroscopy (PEPICO), we explored the gas-phase reaction of the methyl radical (CH<sub>3</sub><sup>•</sup>) with the aromatic and resonance-stabilized fluorenyl radical (C<sub>13</sub>H<sub>9</sub><sup>•</sup>) under high-temperature conditions in a chemical microreactor. Anthracene and phenanthrene were detected isomer-selectively using photoionization efficiency (PIE) curves and mass-selected threshold photoelectron (ms-TPE) spectra. While phenanthrene is produced through a radical-radical recombination of the carbon-centered radicals, anthracene may plausibly be formed through an unconventional radical addition to a low spin-density fluorenyl carbon. These pathways result in five-membered ring expansion—a critical mechanism crucial to PAH mass growth converting bent PAHs into planar nanostructures.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 23","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv0692","citationCount":"0","resultStr":"{\"title\":\"Gas-phase synthesis of anthracene and phenanthrene via radical-radical reaction induced ring expansions\",\"authors\":\"Shane J. Goettl,&nbsp;Andrew M. Turner,&nbsp;Vladislav S. Krasnoukhov,&nbsp;Valeriy N. Azyazov,&nbsp;Keisuke Kanayama,&nbsp;Patrick Hemberger,&nbsp;Alexander M. Mebel,&nbsp;Ralf I. Kaiser\",\"doi\":\"10.1126/sciadv.adv0692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Unraveling reaction mechanisms of aromatic and resonance-stabilized radicals is critical to understanding molecular mass growth processes to polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanoparticles in distinct astrophysical environments (molecular clouds, circumstellar envelopes) and combustion systems. Using photoelectron photoion coincidence spectroscopy (PEPICO), we explored the gas-phase reaction of the methyl radical (CH<sub>3</sub><sup>•</sup>) with the aromatic and resonance-stabilized fluorenyl radical (C<sub>13</sub>H<sub>9</sub><sup>•</sup>) under high-temperature conditions in a chemical microreactor. Anthracene and phenanthrene were detected isomer-selectively using photoionization efficiency (PIE) curves and mass-selected threshold photoelectron (ms-TPE) spectra. While phenanthrene is produced through a radical-radical recombination of the carbon-centered radicals, anthracene may plausibly be formed through an unconventional radical addition to a low spin-density fluorenyl carbon. These pathways result in five-membered ring expansion—a critical mechanism crucial to PAH mass growth converting bent PAHs into planar nanostructures.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 23\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adv0692\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adv0692\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv0692","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

揭示芳烃和共振稳定自由基的反应机制对于理解不同天体物理环境(分子云、星周包层)和燃烧系统中多环芳烃(PAHs)和碳质纳米颗粒的分子质量增长过程至关重要。利用光电子-光离子符合谱(PEPICO)技术,研究了甲基自由基(CH3•)与芳香族共振稳定芴基自由基(C13H9•)在高温条件下的气相反应。利用光解离效率(PIE)曲线和质量选择阈值光电子(ms-TPE)光谱对蒽和菲进行了异构体选择性检测。虽然菲是通过以碳为中心的自由基的自由基-自由基重组产生的,但蒽可能是通过在低自旋密度的氟烯基碳上进行非常规的自由基加成而形成的。这些途径导致五元环扩张,这是多环芳烃质量增长的关键机制,将弯曲的多环芳烃转化为平面纳米结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gas-phase synthesis of anthracene and phenanthrene via radical-radical reaction induced ring expansions

Gas-phase synthesis of anthracene and phenanthrene via radical-radical reaction induced ring expansions
Unraveling reaction mechanisms of aromatic and resonance-stabilized radicals is critical to understanding molecular mass growth processes to polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanoparticles in distinct astrophysical environments (molecular clouds, circumstellar envelopes) and combustion systems. Using photoelectron photoion coincidence spectroscopy (PEPICO), we explored the gas-phase reaction of the methyl radical (CH3) with the aromatic and resonance-stabilized fluorenyl radical (C13H9) under high-temperature conditions in a chemical microreactor. Anthracene and phenanthrene were detected isomer-selectively using photoionization efficiency (PIE) curves and mass-selected threshold photoelectron (ms-TPE) spectra. While phenanthrene is produced through a radical-radical recombination of the carbon-centered radicals, anthracene may plausibly be formed through an unconventional radical addition to a low spin-density fluorenyl carbon. These pathways result in five-membered ring expansion—a critical mechanism crucial to PAH mass growth converting bent PAHs into planar nanostructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信