Sangjin Yang, Xuexiang Huang, Yongjoon Cho, Sungmo Koo, Yanni Ouyang, Zhe Sun, Seonghun Jeong, Thi Le Huyen Mai, Wonjun Kim, Lian Zhong, Shanshan Chen, Chunfeng Zhang, Hee-Seung Lee, Seong-Jun Yoon, Lie Chen, Changduk Yang
{"title":"通过对称分子结构诱导的不对称相互作用,具有特殊日稳定性的高效半透明有机太阳能组件","authors":"Sangjin Yang, Xuexiang Huang, Yongjoon Cho, Sungmo Koo, Yanni Ouyang, Zhe Sun, Seonghun Jeong, Thi Le Huyen Mai, Wonjun Kim, Lian Zhong, Shanshan Chen, Chunfeng Zhang, Hee-Seung Lee, Seong-Jun Yoon, Lie Chen, Changduk Yang","doi":"10.1002/ange.202424287","DOIUrl":null,"url":null,"abstract":"<p>The symmetry-breaking design strategy of nonfullerene acceptor can improve the performance of semitransparent organic solar cells (ST-OSCs). However, no report exists on the “asymmetric molecular interaction” induced by symmetric molecular structure in nonfullerene acceptors. Herein, we showcase that 2D fluorophenyl outer groups in symmetric 4FY promote dipole-driven self-assembly through asymmetric molecular interactions, resulting in a tighter packed structure than Y6 with the same symmetric geometry. Such unique properties lead to high-performance layer-by-layer OSCs, accompanied by simultaneously reduced energy and recombination losses and improved charge-related characteristics. ST-OSCs based on PCE10-2F/4FY achieve notable power conversion efficiency (PCE) of 10.81%, average visible transmittance of 45.43%, and light utilization efficiency (LUE) of 4.91%. Moreover, exceptional diurnal cycling stability is observed in the ST-OSCs based on PCE10-2F/4FY with much prolonged <i>T</i><sub>80</sub> up to 134 h, which is about 17 times greater than the reference PCE10-2F/Y6. Lastly, we fabricate highly efficient semitransparent organic solar modules based on PCE10-2F/4FY (active area of 18 cm<sup>2</sup>), which shows PCE of 6.78% and the highest LUE of 3.10% to date for all-narrow bandgap semitransparent organic solar modules. This work demonstrates that asymmetry-driven molecular interactions can be leveraged to fabricate large-area ST-OSCs that are efficient and stable under realistic operating conditions.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202424287","citationCount":"0","resultStr":"{\"title\":\"Efficient Semitransparent Organic Solar Modules with Exceptional Diurnal Stability Through Asymmetric Interaction Induced by Symmetric Molecular Structure\",\"authors\":\"Sangjin Yang, Xuexiang Huang, Yongjoon Cho, Sungmo Koo, Yanni Ouyang, Zhe Sun, Seonghun Jeong, Thi Le Huyen Mai, Wonjun Kim, Lian Zhong, Shanshan Chen, Chunfeng Zhang, Hee-Seung Lee, Seong-Jun Yoon, Lie Chen, Changduk Yang\",\"doi\":\"10.1002/ange.202424287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The symmetry-breaking design strategy of nonfullerene acceptor can improve the performance of semitransparent organic solar cells (ST-OSCs). However, no report exists on the “asymmetric molecular interaction” induced by symmetric molecular structure in nonfullerene acceptors. Herein, we showcase that 2D fluorophenyl outer groups in symmetric 4FY promote dipole-driven self-assembly through asymmetric molecular interactions, resulting in a tighter packed structure than Y6 with the same symmetric geometry. Such unique properties lead to high-performance layer-by-layer OSCs, accompanied by simultaneously reduced energy and recombination losses and improved charge-related characteristics. ST-OSCs based on PCE10-2F/4FY achieve notable power conversion efficiency (PCE) of 10.81%, average visible transmittance of 45.43%, and light utilization efficiency (LUE) of 4.91%. Moreover, exceptional diurnal cycling stability is observed in the ST-OSCs based on PCE10-2F/4FY with much prolonged <i>T</i><sub>80</sub> up to 134 h, which is about 17 times greater than the reference PCE10-2F/Y6. Lastly, we fabricate highly efficient semitransparent organic solar modules based on PCE10-2F/4FY (active area of 18 cm<sup>2</sup>), which shows PCE of 6.78% and the highest LUE of 3.10% to date for all-narrow bandgap semitransparent organic solar modules. This work demonstrates that asymmetry-driven molecular interactions can be leveraged to fabricate large-area ST-OSCs that are efficient and stable under realistic operating conditions.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"137 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202424287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202424287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202424287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Semitransparent Organic Solar Modules with Exceptional Diurnal Stability Through Asymmetric Interaction Induced by Symmetric Molecular Structure
The symmetry-breaking design strategy of nonfullerene acceptor can improve the performance of semitransparent organic solar cells (ST-OSCs). However, no report exists on the “asymmetric molecular interaction” induced by symmetric molecular structure in nonfullerene acceptors. Herein, we showcase that 2D fluorophenyl outer groups in symmetric 4FY promote dipole-driven self-assembly through asymmetric molecular interactions, resulting in a tighter packed structure than Y6 with the same symmetric geometry. Such unique properties lead to high-performance layer-by-layer OSCs, accompanied by simultaneously reduced energy and recombination losses and improved charge-related characteristics. ST-OSCs based on PCE10-2F/4FY achieve notable power conversion efficiency (PCE) of 10.81%, average visible transmittance of 45.43%, and light utilization efficiency (LUE) of 4.91%. Moreover, exceptional diurnal cycling stability is observed in the ST-OSCs based on PCE10-2F/4FY with much prolonged T80 up to 134 h, which is about 17 times greater than the reference PCE10-2F/Y6. Lastly, we fabricate highly efficient semitransparent organic solar modules based on PCE10-2F/4FY (active area of 18 cm2), which shows PCE of 6.78% and the highest LUE of 3.10% to date for all-narrow bandgap semitransparent organic solar modules. This work demonstrates that asymmetry-driven molecular interactions can be leveraged to fabricate large-area ST-OSCs that are efficient and stable under realistic operating conditions.