Junbin Ji , Jing Pei , Fanghui Ding , Jie Zhou , Weiliang Dong , Zhongli Cui , Xin Yan
{"title":"红球菌YXP8降解聚氨酯塑料单体4,4′-亚甲基苯胺","authors":"Junbin Ji , Jing Pei , Fanghui Ding , Jie Zhou , Weiliang Dong , Zhongli Cui , Xin Yan","doi":"10.1016/j.ibiod.2025.106135","DOIUrl":null,"url":null,"abstract":"<div><div>The 4,4′-methylenedianiline (MDA) is an important precursor in the production of polyurethane plastic. The environmental release of MDA poses a threat to plants, animals, and humans. Microorganisms exert an important role in degrading xenobiotic compounds. However, only several MDA-degrading microbes are reported, and the molecular mechanism of MDA degradation remains unclear. In this work, a Gram-positive MDA-degrading bacterium <em>Rhodococcus</em> sp. YXP8 was first obtained from the surface of polyurethane waste. This strain could degrade 20 mg·L<sup>−1</sup> MDA at 30 °C and pH 7.0 within 4 days and showed good degradation ability (>70 %) within a wide pH range from 5.0 to 10.0. The results of liquid chromatograph-tandem mass spectrometer analysis indicate that strain YXP8 transformed MDA to two final products of 4-aminophenylacetic acid and (Z)-3-amino-2-hydroxypenta-2,4-dienoic acid. The catabolic pathway of MDA in bacteria was demonstrated for the first time. Strain YXP8 could efficiently remediate MDA-contaminated natural water, eliminating its risk to aquatic organisms. Taken together, this work presents a bacterium with potential for biological treatment of MDA pollutants and for mining genetic determinants of MDA degradation.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"204 ","pages":"Article 106135"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of polyurethane plastic monomer 4,4′-methylenedianiline by Rhodococcus sp. YXP8\",\"authors\":\"Junbin Ji , Jing Pei , Fanghui Ding , Jie Zhou , Weiliang Dong , Zhongli Cui , Xin Yan\",\"doi\":\"10.1016/j.ibiod.2025.106135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 4,4′-methylenedianiline (MDA) is an important precursor in the production of polyurethane plastic. The environmental release of MDA poses a threat to plants, animals, and humans. Microorganisms exert an important role in degrading xenobiotic compounds. However, only several MDA-degrading microbes are reported, and the molecular mechanism of MDA degradation remains unclear. In this work, a Gram-positive MDA-degrading bacterium <em>Rhodococcus</em> sp. YXP8 was first obtained from the surface of polyurethane waste. This strain could degrade 20 mg·L<sup>−1</sup> MDA at 30 °C and pH 7.0 within 4 days and showed good degradation ability (>70 %) within a wide pH range from 5.0 to 10.0. The results of liquid chromatograph-tandem mass spectrometer analysis indicate that strain YXP8 transformed MDA to two final products of 4-aminophenylacetic acid and (Z)-3-amino-2-hydroxypenta-2,4-dienoic acid. The catabolic pathway of MDA in bacteria was demonstrated for the first time. Strain YXP8 could efficiently remediate MDA-contaminated natural water, eliminating its risk to aquatic organisms. Taken together, this work presents a bacterium with potential for biological treatment of MDA pollutants and for mining genetic determinants of MDA degradation.</div></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"204 \",\"pages\":\"Article 106135\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830525001398\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525001398","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biodegradation of polyurethane plastic monomer 4,4′-methylenedianiline by Rhodococcus sp. YXP8
The 4,4′-methylenedianiline (MDA) is an important precursor in the production of polyurethane plastic. The environmental release of MDA poses a threat to plants, animals, and humans. Microorganisms exert an important role in degrading xenobiotic compounds. However, only several MDA-degrading microbes are reported, and the molecular mechanism of MDA degradation remains unclear. In this work, a Gram-positive MDA-degrading bacterium Rhodococcus sp. YXP8 was first obtained from the surface of polyurethane waste. This strain could degrade 20 mg·L−1 MDA at 30 °C and pH 7.0 within 4 days and showed good degradation ability (>70 %) within a wide pH range from 5.0 to 10.0. The results of liquid chromatograph-tandem mass spectrometer analysis indicate that strain YXP8 transformed MDA to two final products of 4-aminophenylacetic acid and (Z)-3-amino-2-hydroxypenta-2,4-dienoic acid. The catabolic pathway of MDA in bacteria was demonstrated for the first time. Strain YXP8 could efficiently remediate MDA-contaminated natural water, eliminating its risk to aquatic organisms. Taken together, this work presents a bacterium with potential for biological treatment of MDA pollutants and for mining genetic determinants of MDA degradation.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.