{"title":"考虑电动汽车弹性充电行为的电力运输一体化系统的三级规划策略","authors":"Jieyun Zheng , Xin Wei , Zhanghuang Zhang , Jingwei Xue , Ruochen Chen , Shiwei Xie","doi":"10.1016/j.apenergy.2025.126207","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid increase in electric vehicle (EV) adoption, there is an escalating need for coordinated planning between power and transportation systems to address the additional stress on urban infrastructure. This study tackles the critical challenge of aligning investment and planning between these systems, specifically considering the impact of EV charging behaviors. To address this issue, we propose a novel tri-level optimization framework that incorporates a quasi-variational inequality (QVI) model to effectively capture the interactions between user equilibrium (UE) in transportation networks and elastic EV charging demand. The upper level of the model optimizes investments in power systems, including distributed generation and charging infrastructure. The middle level concentrates on expanding road capacity, while the lower level resolves the traffic flow patterns under user equilibrium with elastic charging behaviors (UE-ECB) using the QVI approach. By transforming the tri-level model into a bi-level optimization program with quasi-variational inequality (OP-QVI) formulation, we achieve computational tractability and provide efficient solutions. Results show that the elastic charging demand model outperforms the non-elastic assumption, reducing total costs by 22.2 %, with power system investments down by 19.1 % and transportation system investments down by 39.8 %. These findings demonstrate the model's superior accuracy, avoiding the overestimation of infrastructure needs. Furthermore, the proposed algorithm efficiently solves complex integrated planning problems, ensuring both computational effectiveness and economic viability in system-wide optimization.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"396 ","pages":"Article 126207"},"PeriodicalIF":11.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tri-level planning strategy for integrated power and transport systems incorporating EV elastic charging behaviors\",\"authors\":\"Jieyun Zheng , Xin Wei , Zhanghuang Zhang , Jingwei Xue , Ruochen Chen , Shiwei Xie\",\"doi\":\"10.1016/j.apenergy.2025.126207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid increase in electric vehicle (EV) adoption, there is an escalating need for coordinated planning between power and transportation systems to address the additional stress on urban infrastructure. This study tackles the critical challenge of aligning investment and planning between these systems, specifically considering the impact of EV charging behaviors. To address this issue, we propose a novel tri-level optimization framework that incorporates a quasi-variational inequality (QVI) model to effectively capture the interactions between user equilibrium (UE) in transportation networks and elastic EV charging demand. The upper level of the model optimizes investments in power systems, including distributed generation and charging infrastructure. The middle level concentrates on expanding road capacity, while the lower level resolves the traffic flow patterns under user equilibrium with elastic charging behaviors (UE-ECB) using the QVI approach. By transforming the tri-level model into a bi-level optimization program with quasi-variational inequality (OP-QVI) formulation, we achieve computational tractability and provide efficient solutions. Results show that the elastic charging demand model outperforms the non-elastic assumption, reducing total costs by 22.2 %, with power system investments down by 19.1 % and transportation system investments down by 39.8 %. These findings demonstrate the model's superior accuracy, avoiding the overestimation of infrastructure needs. Furthermore, the proposed algorithm efficiently solves complex integrated planning problems, ensuring both computational effectiveness and economic viability in system-wide optimization.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"396 \",\"pages\":\"Article 126207\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925009377\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925009377","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A tri-level planning strategy for integrated power and transport systems incorporating EV elastic charging behaviors
With the rapid increase in electric vehicle (EV) adoption, there is an escalating need for coordinated planning between power and transportation systems to address the additional stress on urban infrastructure. This study tackles the critical challenge of aligning investment and planning between these systems, specifically considering the impact of EV charging behaviors. To address this issue, we propose a novel tri-level optimization framework that incorporates a quasi-variational inequality (QVI) model to effectively capture the interactions between user equilibrium (UE) in transportation networks and elastic EV charging demand. The upper level of the model optimizes investments in power systems, including distributed generation and charging infrastructure. The middle level concentrates on expanding road capacity, while the lower level resolves the traffic flow patterns under user equilibrium with elastic charging behaviors (UE-ECB) using the QVI approach. By transforming the tri-level model into a bi-level optimization program with quasi-variational inequality (OP-QVI) formulation, we achieve computational tractability and provide efficient solutions. Results show that the elastic charging demand model outperforms the non-elastic assumption, reducing total costs by 22.2 %, with power system investments down by 19.1 % and transportation system investments down by 39.8 %. These findings demonstrate the model's superior accuracy, avoiding the overestimation of infrastructure needs. Furthermore, the proposed algorithm efficiently solves complex integrated planning problems, ensuring both computational effectiveness and economic viability in system-wide optimization.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.