完美光学涡旋光束在强非局部非线性介质中的传输

IF 3 Q3 Physics and Astronomy
Bikash K. Das , Camilo Granados , Marcelo F. Ciappina
{"title":"完美光学涡旋光束在强非局部非线性介质中的传输","authors":"Bikash K. Das ,&nbsp;Camilo Granados ,&nbsp;Marcelo F. Ciappina","doi":"10.1016/j.rio.2025.100842","DOIUrl":null,"url":null,"abstract":"<div><div>The unique spatial characteristics of perfect optical vortex (POV) beams make them ideal candidates for a wide range of applications, from microparticle trapping and manipulation to optical communication. In this work, we investigate the propagation of POV beams in a strongly nonlocal nonlinear (SNNL) medium. An analytical expression for the complex field amplitude is derived using the ray transfer matrix formalism and the Huygens–Fresnel integral. We numerically study how various beam and medium parameters — such as the topological charge (TC), the ratio of the beam’s ring radius (<span><math><mi>R</mi></math></span>) to its half-ring width (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), and the nonlocal parameter (<span><math><mi>η</mi></math></span>) — affect the longitudinal intensity distribution of the POV beam. Both non-diffracting and self-focusing effects are clearly observed, accompanied by a periodic intensity distribution along the propagation axis. Increasing the TC has minimal impact on the beam profile size and intensity distribution during the non-diffracting stage. However, in the self-focusing stage, the central dark core expands monotonically with the TC. Additionally, the self-focusing effects diminish and eventually disappear as <span><math><mfrac><mrow><mi>R</mi></mrow><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac></math></span> approaches unity. For a fixed beam wavelength and waist size, the nonlocal parameter exclusively determines the periodicity of the intensity distribution, revealing an inverse relationship between periodicity and nonlocality. These findings may contribute to improved techniques in microparticle trapping and manipulation using POV beams.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"21 ","pages":"Article 100842"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation of perfect optical vortex beams in a strongly nonlocal nonlinear medium\",\"authors\":\"Bikash K. Das ,&nbsp;Camilo Granados ,&nbsp;Marcelo F. Ciappina\",\"doi\":\"10.1016/j.rio.2025.100842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The unique spatial characteristics of perfect optical vortex (POV) beams make them ideal candidates for a wide range of applications, from microparticle trapping and manipulation to optical communication. In this work, we investigate the propagation of POV beams in a strongly nonlocal nonlinear (SNNL) medium. An analytical expression for the complex field amplitude is derived using the ray transfer matrix formalism and the Huygens–Fresnel integral. We numerically study how various beam and medium parameters — such as the topological charge (TC), the ratio of the beam’s ring radius (<span><math><mi>R</mi></math></span>) to its half-ring width (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), and the nonlocal parameter (<span><math><mi>η</mi></math></span>) — affect the longitudinal intensity distribution of the POV beam. Both non-diffracting and self-focusing effects are clearly observed, accompanied by a periodic intensity distribution along the propagation axis. Increasing the TC has minimal impact on the beam profile size and intensity distribution during the non-diffracting stage. However, in the self-focusing stage, the central dark core expands monotonically with the TC. Additionally, the self-focusing effects diminish and eventually disappear as <span><math><mfrac><mrow><mi>R</mi></mrow><mrow><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac></math></span> approaches unity. For a fixed beam wavelength and waist size, the nonlocal parameter exclusively determines the periodicity of the intensity distribution, revealing an inverse relationship between periodicity and nonlocality. These findings may contribute to improved techniques in microparticle trapping and manipulation using POV beams.</div></div>\",\"PeriodicalId\":21151,\"journal\":{\"name\":\"Results in Optics\",\"volume\":\"21 \",\"pages\":\"Article 100842\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666950125000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

完美光涡旋(POV)光束独特的空间特性使其成为广泛应用的理想候选者,从微粒捕获和操纵到光通信。在这项工作中,我们研究了POV光束在强非局部非线性(SNNL)介质中的传播。利用射线传递矩阵的形式和惠更斯-菲涅耳积分导出了复场振幅的解析表达式。我们数值研究了不同的光束和介质参数——如拓扑电荷(TC)、光束环半径(R)与半环宽度(w0)之比以及非局部参数(η)——如何影响POV光束的纵向强度分布。无衍射和自聚焦效应都被清楚地观察到,并伴随着沿传播轴的周期性强度分布。在非衍射阶段,增加TC对光束轮廓尺寸和强度分布的影响最小。然而,在自聚焦阶段,中央暗核随着TC单调扩展。此外,自聚焦效应减弱,并最终消失,因为Rw0接近统一。对于固定的光束波长和束腰尺寸,非局域参数完全决定了强度分布的周期性,揭示了周期性与非局域性之间的反比关系。这些发现可能有助于改进利用POV光束捕获和操纵微粒的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation of perfect optical vortex beams in a strongly nonlocal nonlinear medium
The unique spatial characteristics of perfect optical vortex (POV) beams make them ideal candidates for a wide range of applications, from microparticle trapping and manipulation to optical communication. In this work, we investigate the propagation of POV beams in a strongly nonlocal nonlinear (SNNL) medium. An analytical expression for the complex field amplitude is derived using the ray transfer matrix formalism and the Huygens–Fresnel integral. We numerically study how various beam and medium parameters — such as the topological charge (TC), the ratio of the beam’s ring radius (R) to its half-ring width (w0), and the nonlocal parameter (η) — affect the longitudinal intensity distribution of the POV beam. Both non-diffracting and self-focusing effects are clearly observed, accompanied by a periodic intensity distribution along the propagation axis. Increasing the TC has minimal impact on the beam profile size and intensity distribution during the non-diffracting stage. However, in the self-focusing stage, the central dark core expands monotonically with the TC. Additionally, the self-focusing effects diminish and eventually disappear as Rw0 approaches unity. For a fixed beam wavelength and waist size, the nonlocal parameter exclusively determines the periodicity of the intensity distribution, revealing an inverse relationship between periodicity and nonlocality. These findings may contribute to improved techniques in microparticle trapping and manipulation using POV beams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信