纳米花样PdCuP催化剂促进乙醇电氧化

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Longbo Wei, Liubin Zhao, Meiling Ye, Aimei Zhu, Qiugen Zhang, Qinglin Liu
{"title":"纳米花样PdCuP催化剂促进乙醇电氧化","authors":"Longbo Wei,&nbsp;Liubin Zhao,&nbsp;Meiling Ye,&nbsp;Aimei Zhu,&nbsp;Qiugen Zhang,&nbsp;Qinglin Liu","doi":"10.1016/j.ijhydene.2025.05.251","DOIUrl":null,"url":null,"abstract":"<div><div>Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)<sub>6</sub> and CH<sub>3</sub>COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>, which is 6.0 times of Pd/C(JM) (866.7 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>). The residual current density value after 5000 s stability test is still 114.8 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>, which is 5.9 times of Pd/C(JM) (19.5 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OH<sub>ads</sub> and further facilitate the oxidation of CO<sub>ads</sub>.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"143 ","pages":"Pages 307-318"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation\",\"authors\":\"Longbo Wei,&nbsp;Liubin Zhao,&nbsp;Meiling Ye,&nbsp;Aimei Zhu,&nbsp;Qiugen Zhang,&nbsp;Qinglin Liu\",\"doi\":\"10.1016/j.ijhydene.2025.05.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)<sub>6</sub> and CH<sub>3</sub>COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>, which is 6.0 times of Pd/C(JM) (866.7 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>). The residual current density value after 5000 s stability test is still 114.8 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>, which is 5.9 times of Pd/C(JM) (19.5 <span><math><mrow><mtext>mA</mtext><mspace></mspace><msubsup><mtext>mg</mtext><mtext>Pd</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OH<sub>ads</sub> and further facilitate the oxidation of CO<sub>ads</sub>.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"143 \",\"pages\":\"Pages 307-318\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925025364\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925025364","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

直接乙醇燃料电池以其高安全性、便携性和能量转换效率等优点备受关注,具有广阔的发展前景。但由于阳极催化剂的催化活性低、抗中毒等缺点,限制了其商业化应用。本文以W(CO)6和CH3COOH为结构取向剂,采用湿化学方法成功制备了纳米花状PdCuP催化剂(PdCuP NFs)。对于乙醇氧化反应(EOR),制备的PdCuP NFs的峰值电流密度为5157.1 mAmgPd−1,是Pd/C(JM) (866.7 mAmgPd−1)的6.0倍。5000 s稳定性试验后的剩余电流密度值仍为114.8 mAmgPd−1,是Pd/C(JM) (19.5 mAmgPd−1)的5.9倍。结果表明,非金属P的掺杂有利于调整ohad的吸收能,进一步促进coad的氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation
Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)6 and CH3COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 mAmgPd1, which is 6.0 times of Pd/C(JM) (866.7 mAmgPd1). The residual current density value after 5000 s stability test is still 114.8 mAmgPd1, which is 5.9 times of Pd/C(JM) (19.5 mAmgPd1). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OHads and further facilitate the oxidation of COads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信