用爆破法估计涡度内迹和高导数估计

IF 2.3 2区 数学 Q1 MATHEMATICS
Jincheng Yang
{"title":"用爆破法估计涡度内迹和高导数估计","authors":"Jincheng Yang","doi":"10.1016/j.jde.2025.113486","DOIUrl":null,"url":null,"abstract":"<div><div>We derive several nonlinear a priori trace estimates for the 3D incompressible Navier–Stokes equation, which extend the current picture of higher derivative estimates in the mixed norm. The main ingredient is the blow-up method and a novel averaging operator, which could apply to PDEs with scaling invariance and <em>ε</em>-regularity, possibly with a drift.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113486"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vorticity interior trace estimates and higher derivative estimates via blow-up method\",\"authors\":\"Jincheng Yang\",\"doi\":\"10.1016/j.jde.2025.113486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive several nonlinear a priori trace estimates for the 3D incompressible Navier–Stokes equation, which extend the current picture of higher derivative estimates in the mixed norm. The main ingredient is the blow-up method and a novel averaging operator, which could apply to PDEs with scaling invariance and <em>ε</em>-regularity, possibly with a drift.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"442 \",\"pages\":\"Article 113486\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005133\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对三维不可压缩Navier-Stokes方程给出了若干非线性先验迹估计,推广了混合范数中高导数估计的现状。该方法的主要成分是爆破法和一种新的平均算子,该算子适用于具有标度不变性和ε-正则性的偏微分方程,可能有漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vorticity interior trace estimates and higher derivative estimates via blow-up method
We derive several nonlinear a priori trace estimates for the 3D incompressible Navier–Stokes equation, which extend the current picture of higher derivative estimates in the mixed norm. The main ingredient is the blow-up method and a novel averaging operator, which could apply to PDEs with scaling invariance and ε-regularity, possibly with a drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信