{"title":"从非线性Schrödinger方程到相互作用粒子系统","authors":"Weiwei Ao, Juntao Lv, Kelei Wang","doi":"10.1016/j.jde.2025.113509","DOIUrl":null,"url":null,"abstract":"<div><div>We study the limiting behavior of solutions to nonlinear Schrödinger equations<span><span><span><math><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>></mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></math></span></span></span> as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, where <em>p</em> is Sobolev subcritical. These solutions are assumed to have infinitely many peaks. We derive the interaction form between the limiting peak points. This is achieved by first describing the main order term of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span> and providing a very precise estimate on the error by the reverse Lyapunov-Schmidt reduction method, and then extracting information from the reduction equation in a limiting way.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113509"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From nonlinear Schrödinger equation to interacting particle system\",\"authors\":\"Weiwei Ao, Juntao Lv, Kelei Wang\",\"doi\":\"10.1016/j.jde.2025.113509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the limiting behavior of solutions to nonlinear Schrödinger equations<span><span><span><math><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>></mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo></math></span></span></span> as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>, where <em>p</em> is Sobolev subcritical. These solutions are assumed to have infinitely many peaks. We derive the interaction form between the limiting peak points. This is achieved by first describing the main order term of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span> and providing a very precise estimate on the error by the reverse Lyapunov-Schmidt reduction method, and then extracting information from the reduction equation in a limiting way.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"442 \",\"pages\":\"Article 113509\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005364\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005364","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
From nonlinear Schrödinger equation to interacting particle system
We study the limiting behavior of solutions to nonlinear Schrödinger equations as , where p is Sobolev subcritical. These solutions are assumed to have infinitely many peaks. We derive the interaction form between the limiting peak points. This is achieved by first describing the main order term of and providing a very precise estimate on the error by the reverse Lyapunov-Schmidt reduction method, and then extracting information from the reduction equation in a limiting way.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics