Junhyeok Choi , Seongeom Jeong , Semi Jang , Chanhyuk Park , Sanghyun Jeong , Sungju IM
{"title":"电化学矿物碳化:二氧化碳捕获和利用的可持续方法","authors":"Junhyeok Choi , Seongeom Jeong , Semi Jang , Chanhyuk Park , Sanghyun Jeong , Sungju IM","doi":"10.1016/j.ccst.2025.100444","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral carbonation for CO<sub>2</sub> capture and utilization often requires high temperatures and pressures, necessitating alternative approaches. Electrochemical carbon capture has emerged as a promising technology due to its high efficiency and selectivity. However, its high capital expenditure (CAPEX) remains a challenge. In this study, carbon cloth (CC) electrodes were evaluated for their potential to enhance carbon capture, mineralization, and hydrogen production. The stability of conductive CC was confirmed as a substitute electrode under strong acidic and basic conditions, maintaining consistent contact angle and surface resistance. CC-based electrodes facilitated carbonate formation by inducing pH shifts through applied currents, achieving mineralization and hydrogen production efficiencies comparable to conventional methods. Furthermore, CC-based electrochemical systems demonstrated reduced environmental impacts, including lower global warming potential, toxicity, and eutrophication. These finding highlight the potential of CC-based electrodes as a cost-effective and sustainable alternative for electrochemical carbon capture, contributing to climate change mitigation and sustainable development.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100444"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical mineral carbonation: A sustainable approach to CO₂ capture and utilization\",\"authors\":\"Junhyeok Choi , Seongeom Jeong , Semi Jang , Chanhyuk Park , Sanghyun Jeong , Sungju IM\",\"doi\":\"10.1016/j.ccst.2025.100444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mineral carbonation for CO<sub>2</sub> capture and utilization often requires high temperatures and pressures, necessitating alternative approaches. Electrochemical carbon capture has emerged as a promising technology due to its high efficiency and selectivity. However, its high capital expenditure (CAPEX) remains a challenge. In this study, carbon cloth (CC) electrodes were evaluated for their potential to enhance carbon capture, mineralization, and hydrogen production. The stability of conductive CC was confirmed as a substitute electrode under strong acidic and basic conditions, maintaining consistent contact angle and surface resistance. CC-based electrodes facilitated carbonate formation by inducing pH shifts through applied currents, achieving mineralization and hydrogen production efficiencies comparable to conventional methods. Furthermore, CC-based electrochemical systems demonstrated reduced environmental impacts, including lower global warming potential, toxicity, and eutrophication. These finding highlight the potential of CC-based electrodes as a cost-effective and sustainable alternative for electrochemical carbon capture, contributing to climate change mitigation and sustainable development.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100444\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical mineral carbonation: A sustainable approach to CO₂ capture and utilization
Mineral carbonation for CO2 capture and utilization often requires high temperatures and pressures, necessitating alternative approaches. Electrochemical carbon capture has emerged as a promising technology due to its high efficiency and selectivity. However, its high capital expenditure (CAPEX) remains a challenge. In this study, carbon cloth (CC) electrodes were evaluated for their potential to enhance carbon capture, mineralization, and hydrogen production. The stability of conductive CC was confirmed as a substitute electrode under strong acidic and basic conditions, maintaining consistent contact angle and surface resistance. CC-based electrodes facilitated carbonate formation by inducing pH shifts through applied currents, achieving mineralization and hydrogen production efficiencies comparable to conventional methods. Furthermore, CC-based electrochemical systems demonstrated reduced environmental impacts, including lower global warming potential, toxicity, and eutrophication. These finding highlight the potential of CC-based electrodes as a cost-effective and sustainable alternative for electrochemical carbon capture, contributing to climate change mitigation and sustainable development.