作为国家CCUS评估框架(NCAF)一部分的二氧化碳捕获技术的设计、建模和技术-经济-环境分析的系统方法

Robert Symonds , Marzieh Shokrollahi , Robin Hughes , Philippe Navarri , Rebecca Modler
{"title":"作为国家CCUS评估框架(NCAF)一部分的二氧化碳捕获技术的设计、建模和技术-经济-环境分析的系统方法","authors":"Robert Symonds ,&nbsp;Marzieh Shokrollahi ,&nbsp;Robin Hughes ,&nbsp;Philippe Navarri ,&nbsp;Rebecca Modler","doi":"10.1016/j.ccst.2025.100439","DOIUrl":null,"url":null,"abstract":"<div><div>Given the commitment to reaching net-zero emissions by 2050, the deployment of carbon capture, utilization, and storage (CCUS) technologies will be instrumental in reaching gigatonne-scale CO<sub>2</sub> mitigation. High costs driven by economies of scale, CO<sub>2</sub> partial pressures, and large energy demands, along with need for substantial new CO<sub>2</sub> transportation and storage infrastructure, are key barriers to large-scale the deployment of CCUS. This paper introduces the overall National CCUS Assessment Framework (NCAF) platform and its key elements to provide context on how it can be utilized to facilitate strategic planning of CCUS infrastructure at the regional to national scale. The NCAF platform, comprised of 5 components, combines rigorous datasets, costing and life cycle assessment (LCA) methods, optimization models, and visualization methods across the whole CCUS value chain. This paper focuses on the CO<sub>2</sub> Capture Modeling and Costing/LCA Tool providing details on overall approach, development steps, and the application of the techno-economic-environmental machine learning (ML) models to industry archetypes. Preliminary sensitivity and industry analysis show the robustness of the ML models, providing quick and accurate costs and environment burdens. Key parameters including flue gas flow rate and composition, capture rate, and product CO<sub>2</sub> pressure are explored, highlighting the ideal operating conditions when considering solvent-based post-combustion CO<sub>2</sub> capture. An exploratory analysis of over 300 Canadian emitting facilities provides practical information about how costs and overall global warming potential (GWP) vary between industry type, facility location, and production scale. Subsequent studies will focus on large-scale case studies to simultaneously determine and minimize the total cost of the entire CCUS value chain – CO<sub>2</sub> capture, transport, and storage.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100439"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic approach to the design, modeling, and techno-economic-environmental analysis of CO2 capture technologies as part of the National CCUS Assessment Framework (NCAF)\",\"authors\":\"Robert Symonds ,&nbsp;Marzieh Shokrollahi ,&nbsp;Robin Hughes ,&nbsp;Philippe Navarri ,&nbsp;Rebecca Modler\",\"doi\":\"10.1016/j.ccst.2025.100439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the commitment to reaching net-zero emissions by 2050, the deployment of carbon capture, utilization, and storage (CCUS) technologies will be instrumental in reaching gigatonne-scale CO<sub>2</sub> mitigation. High costs driven by economies of scale, CO<sub>2</sub> partial pressures, and large energy demands, along with need for substantial new CO<sub>2</sub> transportation and storage infrastructure, are key barriers to large-scale the deployment of CCUS. This paper introduces the overall National CCUS Assessment Framework (NCAF) platform and its key elements to provide context on how it can be utilized to facilitate strategic planning of CCUS infrastructure at the regional to national scale. The NCAF platform, comprised of 5 components, combines rigorous datasets, costing and life cycle assessment (LCA) methods, optimization models, and visualization methods across the whole CCUS value chain. This paper focuses on the CO<sub>2</sub> Capture Modeling and Costing/LCA Tool providing details on overall approach, development steps, and the application of the techno-economic-environmental machine learning (ML) models to industry archetypes. Preliminary sensitivity and industry analysis show the robustness of the ML models, providing quick and accurate costs and environment burdens. Key parameters including flue gas flow rate and composition, capture rate, and product CO<sub>2</sub> pressure are explored, highlighting the ideal operating conditions when considering solvent-based post-combustion CO<sub>2</sub> capture. An exploratory analysis of over 300 Canadian emitting facilities provides practical information about how costs and overall global warming potential (GWP) vary between industry type, facility location, and production scale. Subsequent studies will focus on large-scale case studies to simultaneously determine and minimize the total cost of the entire CCUS value chain – CO<sub>2</sub> capture, transport, and storage.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100439\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于到2050年实现净零排放的承诺,碳捕获、利用和封存(CCUS)技术的部署将有助于实现千兆吨规模的二氧化碳减排。规模经济驱动的高成本、二氧化碳分压、巨大的能源需求,以及对大量新的二氧化碳运输和储存基础设施的需求,是大规模部署CCUS的主要障碍。本文介绍了整个国家CCUS评估框架(NCAF)平台及其关键要素,以提供如何利用它来促进区域到国家范围内CCUS基础设施的战略规划的背景。NCAF平台由5个组件组成,结合了严格的数据集、成本和生命周期评估(LCA)方法、优化模型和可视化方法,涵盖了整个CCUS价值链。本文重点介绍了二氧化碳捕获建模和成本计算/LCA工具,提供了总体方法,开发步骤以及技术-经济-环境机器学习(ML)模型在行业原型中的应用的详细信息。初步的敏感性和行业分析表明,ML模型具有鲁棒性,可以提供快速准确的成本和环境负担。探讨了烟气流量和组成、捕集率和产物CO2压力等关键参数,强调了考虑溶剂基燃烧后CO2捕集时的理想操作条件。对加拿大300多个排放设施的探索性分析提供了有关成本和总体全球变暖潜能值(GWP)在工业类型、设施位置和生产规模之间如何变化的实用信息。后续的研究将集中在大规模的案例研究上,以同时确定并最小化整个CCUS价值链的总成本——二氧化碳捕获、运输和储存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic approach to the design, modeling, and techno-economic-environmental analysis of CO2 capture technologies as part of the National CCUS Assessment Framework (NCAF)
Given the commitment to reaching net-zero emissions by 2050, the deployment of carbon capture, utilization, and storage (CCUS) technologies will be instrumental in reaching gigatonne-scale CO2 mitigation. High costs driven by economies of scale, CO2 partial pressures, and large energy demands, along with need for substantial new CO2 transportation and storage infrastructure, are key barriers to large-scale the deployment of CCUS. This paper introduces the overall National CCUS Assessment Framework (NCAF) platform and its key elements to provide context on how it can be utilized to facilitate strategic planning of CCUS infrastructure at the regional to national scale. The NCAF platform, comprised of 5 components, combines rigorous datasets, costing and life cycle assessment (LCA) methods, optimization models, and visualization methods across the whole CCUS value chain. This paper focuses on the CO2 Capture Modeling and Costing/LCA Tool providing details on overall approach, development steps, and the application of the techno-economic-environmental machine learning (ML) models to industry archetypes. Preliminary sensitivity and industry analysis show the robustness of the ML models, providing quick and accurate costs and environment burdens. Key parameters including flue gas flow rate and composition, capture rate, and product CO2 pressure are explored, highlighting the ideal operating conditions when considering solvent-based post-combustion CO2 capture. An exploratory analysis of over 300 Canadian emitting facilities provides practical information about how costs and overall global warming potential (GWP) vary between industry type, facility location, and production scale. Subsequent studies will focus on large-scale case studies to simultaneously determine and minimize the total cost of the entire CCUS value chain – CO2 capture, transport, and storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信