贝叶斯模糊化在模糊数据统计分析中的应用

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Antonio Calcagnì , Przemysław Grzegorzewski , Maciej Romaniuk
{"title":"贝叶斯模糊化在模糊数据统计分析中的应用","authors":"Antonio Calcagnì ,&nbsp;Przemysław Grzegorzewski ,&nbsp;Maciej Romaniuk","doi":"10.1016/j.ijar.2025.109495","DOIUrl":null,"url":null,"abstract":"<div><div>Fuzzy data, prevalent in social sciences and other fields, capture uncertainties arising from subjective evaluations and measurement imprecision. Despite significant advancements in fuzzy statistics, a unified inferential regression-based framework remains undeveloped. Hence, we propose a novel approach for analyzing bounded fuzzy variables within a regression framework. Building on the premise that fuzzy data result from a process analogous to statistical coarsening, we introduce a conditional probabilistic approach that links observed fuzzy statistics (e.g., mode, spread) to the underlying, unobserved statistical model, which depends on external covariates. The inferential problem is addressed using Approximate Bayesian methods, mainly through a Gibbs sampler incorporating a quadratic approximation of the posterior distribution. Simulation studies and applications involving external validations are employed to evaluate the effectiveness of the proposed approach for fuzzy data analysis. By reintegrating fuzzy data analysis into a more traditional statistical framework, this work provides a significant step toward enhancing the interpretability and applicability of fuzzy statistical methods in many applicative contexts.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"186 ","pages":"Article 109495"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesianize fuzziness in the statistical analysis of fuzzy data\",\"authors\":\"Antonio Calcagnì ,&nbsp;Przemysław Grzegorzewski ,&nbsp;Maciej Romaniuk\",\"doi\":\"10.1016/j.ijar.2025.109495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fuzzy data, prevalent in social sciences and other fields, capture uncertainties arising from subjective evaluations and measurement imprecision. Despite significant advancements in fuzzy statistics, a unified inferential regression-based framework remains undeveloped. Hence, we propose a novel approach for analyzing bounded fuzzy variables within a regression framework. Building on the premise that fuzzy data result from a process analogous to statistical coarsening, we introduce a conditional probabilistic approach that links observed fuzzy statistics (e.g., mode, spread) to the underlying, unobserved statistical model, which depends on external covariates. The inferential problem is addressed using Approximate Bayesian methods, mainly through a Gibbs sampler incorporating a quadratic approximation of the posterior distribution. Simulation studies and applications involving external validations are employed to evaluate the effectiveness of the proposed approach for fuzzy data analysis. By reintegrating fuzzy data analysis into a more traditional statistical framework, this work provides a significant step toward enhancing the interpretability and applicability of fuzzy statistical methods in many applicative contexts.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"186 \",\"pages\":\"Article 109495\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001367\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001367","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

模糊数据普遍存在于社会科学和其他领域,捕捉主观评价和测量不精确所产生的不确定性。尽管模糊统计取得了重大进展,但统一的基于推理回归的框架仍未开发。因此,我们提出了一种在回归框架内分析有界模糊变量的新方法。基于模糊数据来自类似于统计粗化的过程的前提,我们引入了一种条件概率方法,该方法将观察到的模糊统计(例如,模式,传播)与依赖于外部协变量的未观察到的潜在统计模型联系起来。使用近似贝叶斯方法解决推理问题,主要是通过Gibbs采样器结合后验分布的二次近似。采用仿真研究和涉及外部验证的应用来评估所提出的模糊数据分析方法的有效性。通过将模糊数据分析重新整合到更传统的统计框架中,这项工作为在许多应用环境中提高模糊统计方法的可解释性和适用性提供了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesianize fuzziness in the statistical analysis of fuzzy data
Fuzzy data, prevalent in social sciences and other fields, capture uncertainties arising from subjective evaluations and measurement imprecision. Despite significant advancements in fuzzy statistics, a unified inferential regression-based framework remains undeveloped. Hence, we propose a novel approach for analyzing bounded fuzzy variables within a regression framework. Building on the premise that fuzzy data result from a process analogous to statistical coarsening, we introduce a conditional probabilistic approach that links observed fuzzy statistics (e.g., mode, spread) to the underlying, unobserved statistical model, which depends on external covariates. The inferential problem is addressed using Approximate Bayesian methods, mainly through a Gibbs sampler incorporating a quadratic approximation of the posterior distribution. Simulation studies and applications involving external validations are employed to evaluate the effectiveness of the proposed approach for fuzzy data analysis. By reintegrating fuzzy data analysis into a more traditional statistical framework, this work provides a significant step toward enhancing the interpretability and applicability of fuzzy statistical methods in many applicative contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信