Aneta Brachaczek , Mariusz Dąbrowski, Paweł Lisowski, Kinga Dziedzic, Michal A. Glinicki
{"title":"在有碱供应的模拟道路路面环境下,混凝土中碱阈值水平触发碱-硅反应","authors":"Aneta Brachaczek , Mariusz Dąbrowski, Paweł Lisowski, Kinga Dziedzic, Michal A. Glinicki","doi":"10.1016/j.conbuildmat.2025.142023","DOIUrl":null,"url":null,"abstract":"<div><div>To minimize the potential risk of concrete damage due to alkali-silica reaction (ASR) when using ordinary Portland cement in concrete mixtures, the alkali threshold level must be established for specific aggregate combinations. Since deicing salts used in the winter maintenance of highway structures can serve as an external source of alkalis, their impact on alkali threshold determination should be evaluated. An experimental investigation was conducted on concrete specimens subjected to a 60°C performance test, both with and without an external alkali supply. Concrete mixtures were prepared using Portland cements with alkali contents ranging from 0.45 % to 1.2 % Na<sub>2</sub>O<sub>eq</sub>. Mineral aggregates consisted of blends of potentially reactive coarse granite and natural siliceous sand, characterized by varying degrees of reactivity. The development of concrete expansion over time and associated changes in its dynamic elastic modulus, as well as the characteristics of ASR products in concrete is reported. The chemical reactivity index was determined based on the concentrations of Si, Ca, and Al in test suspensions containing aggregate, CaO, and NaOH. At simulated pavement environmental conditions variations in temperature and relative humidity in concrete were monitored. The effects of exposure conditions on expansion behavior and the composition of ASR products are discussed. The alkali threshold levels derived for such different exposure conditions are compared and analyzed in relation to the varying potential reactivity of fine aggregates.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"487 ","pages":"Article 142023"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkali threshold level in concrete to trigger the alkali-silica reaction at simulated road pavement environments with alkali supply\",\"authors\":\"Aneta Brachaczek , Mariusz Dąbrowski, Paweł Lisowski, Kinga Dziedzic, Michal A. Glinicki\",\"doi\":\"10.1016/j.conbuildmat.2025.142023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To minimize the potential risk of concrete damage due to alkali-silica reaction (ASR) when using ordinary Portland cement in concrete mixtures, the alkali threshold level must be established for specific aggregate combinations. Since deicing salts used in the winter maintenance of highway structures can serve as an external source of alkalis, their impact on alkali threshold determination should be evaluated. An experimental investigation was conducted on concrete specimens subjected to a 60°C performance test, both with and without an external alkali supply. Concrete mixtures were prepared using Portland cements with alkali contents ranging from 0.45 % to 1.2 % Na<sub>2</sub>O<sub>eq</sub>. Mineral aggregates consisted of blends of potentially reactive coarse granite and natural siliceous sand, characterized by varying degrees of reactivity. The development of concrete expansion over time and associated changes in its dynamic elastic modulus, as well as the characteristics of ASR products in concrete is reported. The chemical reactivity index was determined based on the concentrations of Si, Ca, and Al in test suspensions containing aggregate, CaO, and NaOH. At simulated pavement environmental conditions variations in temperature and relative humidity in concrete were monitored. The effects of exposure conditions on expansion behavior and the composition of ASR products are discussed. The alkali threshold levels derived for such different exposure conditions are compared and analyzed in relation to the varying potential reactivity of fine aggregates.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"487 \",\"pages\":\"Article 142023\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061825021749\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825021749","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Alkali threshold level in concrete to trigger the alkali-silica reaction at simulated road pavement environments with alkali supply
To minimize the potential risk of concrete damage due to alkali-silica reaction (ASR) when using ordinary Portland cement in concrete mixtures, the alkali threshold level must be established for specific aggregate combinations. Since deicing salts used in the winter maintenance of highway structures can serve as an external source of alkalis, their impact on alkali threshold determination should be evaluated. An experimental investigation was conducted on concrete specimens subjected to a 60°C performance test, both with and without an external alkali supply. Concrete mixtures were prepared using Portland cements with alkali contents ranging from 0.45 % to 1.2 % Na2Oeq. Mineral aggregates consisted of blends of potentially reactive coarse granite and natural siliceous sand, characterized by varying degrees of reactivity. The development of concrete expansion over time and associated changes in its dynamic elastic modulus, as well as the characteristics of ASR products in concrete is reported. The chemical reactivity index was determined based on the concentrations of Si, Ca, and Al in test suspensions containing aggregate, CaO, and NaOH. At simulated pavement environmental conditions variations in temperature and relative humidity in concrete were monitored. The effects of exposure conditions on expansion behavior and the composition of ASR products are discussed. The alkali threshold levels derived for such different exposure conditions are compared and analyzed in relation to the varying potential reactivity of fine aggregates.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.