{"title":"由物理因素调节的细胞生态位特性:ECM蛋白作为机械化学开关","authors":"Arnaud Miéville, Viola Vogel","doi":"10.1016/j.cobme.2025.100600","DOIUrl":null,"url":null,"abstract":"<div><div>The discovery that proteins can act as mechanochemical switches lies at the core of the new field of mechanobiology. Nanotools enabled to establish that structural changes induced by mechanical stress or mechano-regulated proteolytic activity alter the accessibility or presentation of binding sites and thereby modulate cellular functions. Current research highlights extracellular matrix (ECM) fiber tension as a powerful modulator of cell functions, with significant implications for tissue pathology and potential applications in clinical diagnostics and therapeutics. With the goal of developing mechanopharmaceuticals, this current opinion aims to discuss emerging insights into mechanochemical switches in the ECM and how alterations in their tensional states can influence cellular behavior and disease progression.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100600"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell Niche Properties as Tuned by Physical Factors: ECM Proteins as Mechanochemical Switches\",\"authors\":\"Arnaud Miéville, Viola Vogel\",\"doi\":\"10.1016/j.cobme.2025.100600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The discovery that proteins can act as mechanochemical switches lies at the core of the new field of mechanobiology. Nanotools enabled to establish that structural changes induced by mechanical stress or mechano-regulated proteolytic activity alter the accessibility or presentation of binding sites and thereby modulate cellular functions. Current research highlights extracellular matrix (ECM) fiber tension as a powerful modulator of cell functions, with significant implications for tissue pathology and potential applications in clinical diagnostics and therapeutics. With the goal of developing mechanopharmaceuticals, this current opinion aims to discuss emerging insights into mechanochemical switches in the ECM and how alterations in their tensional states can influence cellular behavior and disease progression.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100600\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246845112500025X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246845112500025X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cell Niche Properties as Tuned by Physical Factors: ECM Proteins as Mechanochemical Switches
The discovery that proteins can act as mechanochemical switches lies at the core of the new field of mechanobiology. Nanotools enabled to establish that structural changes induced by mechanical stress or mechano-regulated proteolytic activity alter the accessibility or presentation of binding sites and thereby modulate cellular functions. Current research highlights extracellular matrix (ECM) fiber tension as a powerful modulator of cell functions, with significant implications for tissue pathology and potential applications in clinical diagnostics and therapeutics. With the goal of developing mechanopharmaceuticals, this current opinion aims to discuss emerging insights into mechanochemical switches in the ECM and how alterations in their tensional states can influence cellular behavior and disease progression.