{"title":"微针辅助纳米医学:经皮给药的新策略","authors":"Atefeh Zarepour , Asieh Soozanipour , Arezoo Khosravi","doi":"10.1016/j.cobme.2025.100602","DOIUrl":null,"url":null,"abstract":"<div><div>Transdermal drug delivery provides a non-invasive and patient-friendly alternative to conventional administration routes, such as injections and oral medications. Among the latest innovations, microneedles have emerged as a promising technology, offering painless and minimally invasive drug delivery through the skin. MNs allow for precise and controlled drug release, improving therapeutic outcomes while minimizing side effects. Recent advances have focused on integrating nanomaterials—such as nanoparticles, liposomes, and polymeric carriers—into MN systems to enhance drug penetration, targeting, and release kinetics. This combination can overcome the skin's natural barrier, enabling accurate dosing and improved patient compliance. This review explores the principles and advantages of nanomaterial-based microneedles for transdermal delivery, highlighting their role in improving treatment efficiency and patient outcomes. Additionally, we discuss critical challenges in microneedle development, including fabrication scalability, skin compatibility, and long-term stability. Finally, future directions for clinical translation are examined, underscoring their strong potential in modern therapeutic strategies.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100602"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microneedle-assisted nanomedicine: Emerging strategies for transdermal drug delivery\",\"authors\":\"Atefeh Zarepour , Asieh Soozanipour , Arezoo Khosravi\",\"doi\":\"10.1016/j.cobme.2025.100602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transdermal drug delivery provides a non-invasive and patient-friendly alternative to conventional administration routes, such as injections and oral medications. Among the latest innovations, microneedles have emerged as a promising technology, offering painless and minimally invasive drug delivery through the skin. MNs allow for precise and controlled drug release, improving therapeutic outcomes while minimizing side effects. Recent advances have focused on integrating nanomaterials—such as nanoparticles, liposomes, and polymeric carriers—into MN systems to enhance drug penetration, targeting, and release kinetics. This combination can overcome the skin's natural barrier, enabling accurate dosing and improved patient compliance. This review explores the principles and advantages of nanomaterial-based microneedles for transdermal delivery, highlighting their role in improving treatment efficiency and patient outcomes. Additionally, we discuss critical challenges in microneedle development, including fabrication scalability, skin compatibility, and long-term stability. Finally, future directions for clinical translation are examined, underscoring their strong potential in modern therapeutic strategies.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100602\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451125000273\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Microneedle-assisted nanomedicine: Emerging strategies for transdermal drug delivery
Transdermal drug delivery provides a non-invasive and patient-friendly alternative to conventional administration routes, such as injections and oral medications. Among the latest innovations, microneedles have emerged as a promising technology, offering painless and minimally invasive drug delivery through the skin. MNs allow for precise and controlled drug release, improving therapeutic outcomes while minimizing side effects. Recent advances have focused on integrating nanomaterials—such as nanoparticles, liposomes, and polymeric carriers—into MN systems to enhance drug penetration, targeting, and release kinetics. This combination can overcome the skin's natural barrier, enabling accurate dosing and improved patient compliance. This review explores the principles and advantages of nanomaterial-based microneedles for transdermal delivery, highlighting their role in improving treatment efficiency and patient outcomes. Additionally, we discuss critical challenges in microneedle development, including fabrication scalability, skin compatibility, and long-term stability. Finally, future directions for clinical translation are examined, underscoring their strong potential in modern therapeutic strategies.