{"title":"神经网络量化与剪枝的统一随机框架","authors":"Haoyu Zhang , Rayan Saab","doi":"10.1016/j.acha.2025.101778","DOIUrl":null,"url":null,"abstract":"<div><div>Quantization and pruning are two essential techniques for compressing neural networks, yet they are often treated independently, with limited theoretical analysis connecting them. This paper introduces a unified framework for post-training quantization and pruning using stochastic path-following algorithms. Our approach builds on the Stochastic Path Following Quantization (SPFQ) method, extending its applicability to pruning and low-bit quantization, including challenging 1-bit regimes. By incorporating a scaling parameter and generalizing the stochastic operator, the proposed method achieves robust error correction and yields rigorous theoretical error bounds for both quantization and pruning as well as their combination.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"79 ","pages":"Article 101778"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified stochastic framework for neural network quantization and pruning\",\"authors\":\"Haoyu Zhang , Rayan Saab\",\"doi\":\"10.1016/j.acha.2025.101778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantization and pruning are two essential techniques for compressing neural networks, yet they are often treated independently, with limited theoretical analysis connecting them. This paper introduces a unified framework for post-training quantization and pruning using stochastic path-following algorithms. Our approach builds on the Stochastic Path Following Quantization (SPFQ) method, extending its applicability to pruning and low-bit quantization, including challenging 1-bit regimes. By incorporating a scaling parameter and generalizing the stochastic operator, the proposed method achieves robust error correction and yields rigorous theoretical error bounds for both quantization and pruning as well as their combination.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"79 \",\"pages\":\"Article 101778\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000326\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000326","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Unified stochastic framework for neural network quantization and pruning
Quantization and pruning are two essential techniques for compressing neural networks, yet they are often treated independently, with limited theoretical analysis connecting them. This paper introduces a unified framework for post-training quantization and pruning using stochastic path-following algorithms. Our approach builds on the Stochastic Path Following Quantization (SPFQ) method, extending its applicability to pruning and low-bit quantization, including challenging 1-bit regimes. By incorporating a scaling parameter and generalizing the stochastic operator, the proposed method achieves robust error correction and yields rigorous theoretical error bounds for both quantization and pruning as well as their combination.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.