Niccolò Fonio , Pierre Sagaut , Giuseppe Di Molfetta
{"title":"量子碰撞电路,量子不变量和流体动力点阵气体自动机的量子相位估计程序","authors":"Niccolò Fonio , Pierre Sagaut , Giuseppe Di Molfetta","doi":"10.1016/j.compfluid.2025.106688","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice Gas Cellular Automata (LGCA) is a classical numerical method widely known and applied to simulate several physical phenomena. In this paper, we study the translation of LGCA on quantum computers (QC) using computational basis encoding (CBE), developing methods for different purposes. In particular, we clarify and discuss some fundamental limitations and advantages in using CBE and quantum walk as streaming procedure. Using quantum walks affect the possible encoding of classical states in quantum orthogonal states, feature linked to the unitarity of collision and to the possibility of getting a quantum advantage. Then, we give efficient procedures for optimizing collisional quantum circuits, based on the classical features of the model. This is applied specifically to fluid dynamic LGCA. Alongside, a new collision circuit for a 1-dimensional model is proposed. We address the important point of invariants in LGCA providing a method for finding how many invariants appear in their QC formulation. Quantum invariants outnumber the classical expectations, proving the necessity of further research. Lastly, we prove the validity of a method for retrieving any quantity of interest based on quantum phase estimation (QPE).</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"299 ","pages":"Article 106688"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum collision circuit, quantum invariants and quantum phase estimation procedure for fluid dynamic lattice gas automata\",\"authors\":\"Niccolò Fonio , Pierre Sagaut , Giuseppe Di Molfetta\",\"doi\":\"10.1016/j.compfluid.2025.106688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lattice Gas Cellular Automata (LGCA) is a classical numerical method widely known and applied to simulate several physical phenomena. In this paper, we study the translation of LGCA on quantum computers (QC) using computational basis encoding (CBE), developing methods for different purposes. In particular, we clarify and discuss some fundamental limitations and advantages in using CBE and quantum walk as streaming procedure. Using quantum walks affect the possible encoding of classical states in quantum orthogonal states, feature linked to the unitarity of collision and to the possibility of getting a quantum advantage. Then, we give efficient procedures for optimizing collisional quantum circuits, based on the classical features of the model. This is applied specifically to fluid dynamic LGCA. Alongside, a new collision circuit for a 1-dimensional model is proposed. We address the important point of invariants in LGCA providing a method for finding how many invariants appear in their QC formulation. Quantum invariants outnumber the classical expectations, proving the necessity of further research. Lastly, we prove the validity of a method for retrieving any quantity of interest based on quantum phase estimation (QPE).</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"299 \",\"pages\":\"Article 106688\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001483\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001483","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantum collision circuit, quantum invariants and quantum phase estimation procedure for fluid dynamic lattice gas automata
Lattice Gas Cellular Automata (LGCA) is a classical numerical method widely known and applied to simulate several physical phenomena. In this paper, we study the translation of LGCA on quantum computers (QC) using computational basis encoding (CBE), developing methods for different purposes. In particular, we clarify and discuss some fundamental limitations and advantages in using CBE and quantum walk as streaming procedure. Using quantum walks affect the possible encoding of classical states in quantum orthogonal states, feature linked to the unitarity of collision and to the possibility of getting a quantum advantage. Then, we give efficient procedures for optimizing collisional quantum circuits, based on the classical features of the model. This is applied specifically to fluid dynamic LGCA. Alongside, a new collision circuit for a 1-dimensional model is proposed. We address the important point of invariants in LGCA providing a method for finding how many invariants appear in their QC formulation. Quantum invariants outnumber the classical expectations, proving the necessity of further research. Lastly, we prove the validity of a method for retrieving any quantity of interest based on quantum phase estimation (QPE).
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.