基于船舶姿态估计和COLREGs量化的大规模智能避碰决策

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Peiru Shi , Miao Gao , Shuai Chen , Qianfeng Jing , Yu Xia , Yu Han , Anmin Zhang
{"title":"基于船舶姿态估计和COLREGs量化的大规模智能避碰决策","authors":"Peiru Shi ,&nbsp;Miao Gao ,&nbsp;Shuai Chen ,&nbsp;Qianfeng Jing ,&nbsp;Yu Xia ,&nbsp;Yu Han ,&nbsp;Anmin Zhang","doi":"10.1016/j.oceaneng.2025.121679","DOIUrl":null,"url":null,"abstract":"<div><div>Collision avoidance decision-making is crucial for the autonomous navigation of Maritime Autonomous Surface Ships (MASS). Visual pose estimation and navigation light signals provide essential information for evaluating encounter situations under the “in sight” condition defined by COLREGs. This study proposes an intelligent collision avoidance method based on ship pose estimation (SPE) and COLREGs quantification. First, the annotation specifications for the SPE dataset are formulated, and the dataset is constructed accordingly. Then, by optimizing the network structure and loss function of YOLO11m-pose, we develop the GEW-YOLO architecture and train it on the SPE dataset. Subsequently, pose estimation results are used to classify encounter situations and guide decision-making based on encounter characteristics and historical data. In addition, ablation experiments were conducted to validate the proposed GEW-YOLO model, showing a 20.2 % reduction in parameters, a 13.2 % decrease in GFLOPs, and improvements of 5.2 % and 4.7 % in mAP50-95 for detection and pose estimation compared to the baseline. Finally, collision avoidance experiments conducted on self-developed MASS confirm that the proposed method can make accurate collision avoidance decisions across various encounter situations.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"335 ","pages":"Article 121679"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MASS intelligent collision avoidance decision-making based on ship pose estimation and COLREGs quantification\",\"authors\":\"Peiru Shi ,&nbsp;Miao Gao ,&nbsp;Shuai Chen ,&nbsp;Qianfeng Jing ,&nbsp;Yu Xia ,&nbsp;Yu Han ,&nbsp;Anmin Zhang\",\"doi\":\"10.1016/j.oceaneng.2025.121679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Collision avoidance decision-making is crucial for the autonomous navigation of Maritime Autonomous Surface Ships (MASS). Visual pose estimation and navigation light signals provide essential information for evaluating encounter situations under the “in sight” condition defined by COLREGs. This study proposes an intelligent collision avoidance method based on ship pose estimation (SPE) and COLREGs quantification. First, the annotation specifications for the SPE dataset are formulated, and the dataset is constructed accordingly. Then, by optimizing the network structure and loss function of YOLO11m-pose, we develop the GEW-YOLO architecture and train it on the SPE dataset. Subsequently, pose estimation results are used to classify encounter situations and guide decision-making based on encounter characteristics and historical data. In addition, ablation experiments were conducted to validate the proposed GEW-YOLO model, showing a 20.2 % reduction in parameters, a 13.2 % decrease in GFLOPs, and improvements of 5.2 % and 4.7 % in mAP50-95 for detection and pose estimation compared to the baseline. Finally, collision avoidance experiments conducted on self-developed MASS confirm that the proposed method can make accurate collision avoidance decisions across various encounter situations.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"335 \",\"pages\":\"Article 121679\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002980182501385X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002980182501385X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

避碰决策是海上自主水面舰艇自主航行的关键。视觉姿态估计和导航灯信号为在COLREGs定义的“视线内”条件下评估遭遇情况提供了必要的信息。提出了一种基于船舶姿态估计(SPE)和COLREGs量化的智能避碰方法。首先,制定了SPE数据集的标注规范,并据此构建了数据集。然后,通过优化YOLO11m-pose的网络结构和损失函数,开发了GEW-YOLO架构,并在SPE数据集上进行了训练。随后,利用姿态估计结果对遭遇情况进行分类,并根据遭遇特征和历史数据指导决策。此外,还进行了烧蚀实验来验证所提出的GEW-YOLO模型,结果表明,与基线相比,GEW-YOLO模型的参数降低了20.2%,GFLOPs降低了13.2%,mAP50-95的检测和姿态估计分别提高了5.2%和4.7%。最后,在自主开发的MASS上进行了避碰实验,验证了该方法能够在不同的碰撞情况下做出准确的避碰决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MASS intelligent collision avoidance decision-making based on ship pose estimation and COLREGs quantification
Collision avoidance decision-making is crucial for the autonomous navigation of Maritime Autonomous Surface Ships (MASS). Visual pose estimation and navigation light signals provide essential information for evaluating encounter situations under the “in sight” condition defined by COLREGs. This study proposes an intelligent collision avoidance method based on ship pose estimation (SPE) and COLREGs quantification. First, the annotation specifications for the SPE dataset are formulated, and the dataset is constructed accordingly. Then, by optimizing the network structure and loss function of YOLO11m-pose, we develop the GEW-YOLO architecture and train it on the SPE dataset. Subsequently, pose estimation results are used to classify encounter situations and guide decision-making based on encounter characteristics and historical data. In addition, ablation experiments were conducted to validate the proposed GEW-YOLO model, showing a 20.2 % reduction in parameters, a 13.2 % decrease in GFLOPs, and improvements of 5.2 % and 4.7 % in mAP50-95 for detection and pose estimation compared to the baseline. Finally, collision avoidance experiments conducted on self-developed MASS confirm that the proposed method can make accurate collision avoidance decisions across various encounter situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信