{"title":"哈密性的闭包和重对","authors":"Wangyi Shang , Hajo Broersma , Shenggui Zhang , Binlong Li","doi":"10.1016/j.dam.2025.05.028","DOIUrl":null,"url":null,"abstract":"<div><div>We say that a graph <span><math><mi>G</mi></math></span> on <span><math><mi>n</mi></math></span> vertices is <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy if every induced subgraph of <span><math><mi>G</mi></math></span> isomorphic to <span><math><mi>H</mi></math></span> or <span><math><mi>F</mi></math></span> contains two nonadjacent vertices with degree sum at least <span><math><mi>n</mi></math></span>. Generalizing earlier sufficient forbidden subgraph conditions for hamiltonicity, in 2012, Li, Ryjáček, Wang and Zhang determined all connected graphs <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> of order at least 3 other than <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that every 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graph is hamiltonian. In particular, they showed that, up to symmetry, <span><math><mi>R</mi></math></span> must be a claw and <span><math><mrow><mi>S</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>B</mi><mo>,</mo><mi>N</mi><mo>,</mo><mi>W</mi><mo>}</mo></mrow></mrow></math></span>. In 2008, Čada extended Ryjáček’s closure concept for claw-free graphs by introducing what we call the <span><math><mi>c</mi></math></span>-closure for claw-<span><math><mi>o</mi></math></span>-heavy graphs. We apply it here to characterize the structure of the <span><math><mi>c</mi></math></span>-closure of 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graphs, where <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> are as above. Our main results extend or generalize several earlier results on hamiltonicity involving forbidden or <span><math><mi>o</mi></math></span>-heavy subgraphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 25-37"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closures and heavy pairs for hamiltonicity\",\"authors\":\"Wangyi Shang , Hajo Broersma , Shenggui Zhang , Binlong Li\",\"doi\":\"10.1016/j.dam.2025.05.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We say that a graph <span><math><mi>G</mi></math></span> on <span><math><mi>n</mi></math></span> vertices is <span><math><mrow><mo>{</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy if every induced subgraph of <span><math><mi>G</mi></math></span> isomorphic to <span><math><mi>H</mi></math></span> or <span><math><mi>F</mi></math></span> contains two nonadjacent vertices with degree sum at least <span><math><mi>n</mi></math></span>. Generalizing earlier sufficient forbidden subgraph conditions for hamiltonicity, in 2012, Li, Ryjáček, Wang and Zhang determined all connected graphs <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> of order at least 3 other than <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> such that every 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graph is hamiltonian. In particular, they showed that, up to symmetry, <span><math><mi>R</mi></math></span> must be a claw and <span><math><mrow><mi>S</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>B</mi><mo>,</mo><mi>N</mi><mo>,</mo><mi>W</mi><mo>}</mo></mrow></mrow></math></span>. In 2008, Čada extended Ryjáček’s closure concept for claw-free graphs by introducing what we call the <span><math><mi>c</mi></math></span>-closure for claw-<span><math><mi>o</mi></math></span>-heavy graphs. We apply it here to characterize the structure of the <span><math><mi>c</mi></math></span>-closure of 2-connected <span><math><mrow><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></mrow></math></span>-<span><math><mi>o</mi></math></span>-heavy graphs, where <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> are as above. Our main results extend or generalize several earlier results on hamiltonicity involving forbidden or <span><math><mi>o</mi></math></span>-heavy subgraphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"375 \",\"pages\":\"Pages 25-37\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002860\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002860","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We say that a graph on vertices is --heavy if every induced subgraph of isomorphic to or contains two nonadjacent vertices with degree sum at least . Generalizing earlier sufficient forbidden subgraph conditions for hamiltonicity, in 2012, Li, Ryjáček, Wang and Zhang determined all connected graphs and of order at least 3 other than such that every 2-connected --heavy graph is hamiltonian. In particular, they showed that, up to symmetry, must be a claw and . In 2008, Čada extended Ryjáček’s closure concept for claw-free graphs by introducing what we call the -closure for claw--heavy graphs. We apply it here to characterize the structure of the -closure of 2-connected --heavy graphs, where and are as above. Our main results extend or generalize several earlier results on hamiltonicity involving forbidden or -heavy subgraphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.