{"title":"用无符号拉普拉斯谱确定图的连接","authors":"Jiachang Ye , Jianguo Qian , Zoran Stanić","doi":"10.1016/j.dam.2025.05.035","DOIUrl":null,"url":null,"abstract":"<div><div>A graph is determined by its signless Laplacian spectrum if there is no other non-isomorphic graph sharing the same signless Laplacian spectrum. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>l</mi><mo>−</mo><mi>s</mi></mrow></msub></math></span> be the cycle, the path, the complete graph and the complete bipartite graph with <span><math><mi>l</mi></math></span> vertices, respectively. We prove that <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msub><mo>∪</mo><mi>s</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo></mrow></math></span> with <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>22</mn></mrow></math></span>, is determined by the signless Laplacian spectrum if and only if either <span><math><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>s</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mn>3</mn></mrow></math></span> holds for <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the order of <span><math><mi>G</mi></math></span>, and <span><math><mo>∪</mo></math></span> and <span><math><mo>∨</mo></math></span> stand for the disjoint union and the join of two graphs, respectively. Moreover, for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is identified as a graph sharing the signless Laplacian spectrum with <span><math><mi>G</mi></math></span>. This contribution extends some recently published results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 17-24"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining some graph joins by the signless Laplacian spectrum\",\"authors\":\"Jiachang Ye , Jianguo Qian , Zoran Stanić\",\"doi\":\"10.1016/j.dam.2025.05.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph is determined by its signless Laplacian spectrum if there is no other non-isomorphic graph sharing the same signless Laplacian spectrum. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>l</mi><mo>−</mo><mi>s</mi></mrow></msub></math></span> be the cycle, the path, the complete graph and the complete bipartite graph with <span><math><mi>l</mi></math></span> vertices, respectively. We prove that <span><math><mrow><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mrow><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msub><mo>∪</mo><mi>s</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo></mrow></math></span> with <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>22</mn></mrow></math></span>, is determined by the signless Laplacian spectrum if and only if either <span><math><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>s</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mn>3</mn></mrow></math></span> holds for <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>t</mi></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the order of <span><math><mi>G</mi></math></span>, and <span><math><mo>∪</mo></math></span> and <span><math><mo>∨</mo></math></span> stand for the disjoint union and the join of two graphs, respectively. Moreover, for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is identified as a graph sharing the signless Laplacian spectrum with <span><math><mi>G</mi></math></span>. This contribution extends some recently published results.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"375 \",\"pages\":\"Pages 17-24\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002951\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002951","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Determining some graph joins by the signless Laplacian spectrum
A graph is determined by its signless Laplacian spectrum if there is no other non-isomorphic graph sharing the same signless Laplacian spectrum. Let , , and be the cycle, the path, the complete graph and the complete bipartite graph with vertices, respectively. We prove that with , is determined by the signless Laplacian spectrum if and only if either or and holds for , where is the order of , and and stand for the disjoint union and the join of two graphs, respectively. Moreover, for and , is identified as a graph sharing the signless Laplacian spectrum with . This contribution extends some recently published results.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.