Weixiang Chen, Brigitta Dúzs, Pablo G. Argudo, Sebastian V. Bauer, Wei Liu, Avik Samanta, Sapun H. Parekh, Mischa Bonn, Andreas Walther
{"title":"生物分子凝聚体的弹道扩散前沿","authors":"Weixiang Chen, Brigitta Dúzs, Pablo G. Argudo, Sebastian V. Bauer, Wei Liu, Avik Samanta, Sapun H. Parekh, Mischa Bonn, Andreas Walther","doi":"10.1038/s41565-025-01941-0","DOIUrl":null,"url":null,"abstract":"Biomolecular condensates in cells compartmentalize vital processes by enriching molecules through molecular recognition. However, it remains elusive how transport occurs in biomolecular condensates and how it relates to their dynamic and/or viscoelastic state. We show that the transport of molecules in DNA model condensates does not follow classical Fickian diffusion, which has a blurry front with a square root of time dependence. By contrast, we identify a new type of transport with an ultrasharp front that propagates linearly with time. Our data reveal that this ultrasharp ballistic diffusion front originates from molecular recognition and an arrested-to-dynamic transition in the condensate properties. This diffusion mechanism is the result of intertwining chemical kinetics and condensate dynamics on transport in biomolecular condensates. We believe that our understanding will help to better explain and tune the dynamics and properties in synthetic condensate systems and for biological functions. Adding short, complementary oligonucleotides to single-stranded DNA condensates creates a concentrated, linearly propagating, sharp diffusion front that contradicts the fuzzy concentration gradients and nonlinear kinetics typical of Fickian diffusion.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 8","pages":"1062-1070"},"PeriodicalIF":34.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41565-025-01941-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Ballistic diffusion fronts in biomolecular condensates\",\"authors\":\"Weixiang Chen, Brigitta Dúzs, Pablo G. Argudo, Sebastian V. Bauer, Wei Liu, Avik Samanta, Sapun H. Parekh, Mischa Bonn, Andreas Walther\",\"doi\":\"10.1038/s41565-025-01941-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomolecular condensates in cells compartmentalize vital processes by enriching molecules through molecular recognition. However, it remains elusive how transport occurs in biomolecular condensates and how it relates to their dynamic and/or viscoelastic state. We show that the transport of molecules in DNA model condensates does not follow classical Fickian diffusion, which has a blurry front with a square root of time dependence. By contrast, we identify a new type of transport with an ultrasharp front that propagates linearly with time. Our data reveal that this ultrasharp ballistic diffusion front originates from molecular recognition and an arrested-to-dynamic transition in the condensate properties. This diffusion mechanism is the result of intertwining chemical kinetics and condensate dynamics on transport in biomolecular condensates. We believe that our understanding will help to better explain and tune the dynamics and properties in synthetic condensate systems and for biological functions. Adding short, complementary oligonucleotides to single-stranded DNA condensates creates a concentrated, linearly propagating, sharp diffusion front that contradicts the fuzzy concentration gradients and nonlinear kinetics typical of Fickian diffusion.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"20 8\",\"pages\":\"1062-1070\"},\"PeriodicalIF\":34.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s41565-025-01941-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-025-01941-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-025-01941-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ballistic diffusion fronts in biomolecular condensates
Biomolecular condensates in cells compartmentalize vital processes by enriching molecules through molecular recognition. However, it remains elusive how transport occurs in biomolecular condensates and how it relates to their dynamic and/or viscoelastic state. We show that the transport of molecules in DNA model condensates does not follow classical Fickian diffusion, which has a blurry front with a square root of time dependence. By contrast, we identify a new type of transport with an ultrasharp front that propagates linearly with time. Our data reveal that this ultrasharp ballistic diffusion front originates from molecular recognition and an arrested-to-dynamic transition in the condensate properties. This diffusion mechanism is the result of intertwining chemical kinetics and condensate dynamics on transport in biomolecular condensates. We believe that our understanding will help to better explain and tune the dynamics and properties in synthetic condensate systems and for biological functions. Adding short, complementary oligonucleotides to single-stranded DNA condensates creates a concentrated, linearly propagating, sharp diffusion front that contradicts the fuzzy concentration gradients and nonlinear kinetics typical of Fickian diffusion.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.