微流控三维可拉伸热电器件

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhenlong Huang, Tao Chen, Yan Jiang, Rui Zhou, Yizhuo Wang, Junjie Ji, Hongwei Xie, Taisong Pan, Dongpeng Fan, Linlong Liang, Longpeng Yang, Binbin Jiang, Peng Li, Min Gao, Jia Zhu, Guang Yao, Dongfeng Xue, Yuan Lin
{"title":"微流控三维可拉伸热电器件","authors":"Zhenlong Huang, Tao Chen, Yan Jiang, Rui Zhou, Yizhuo Wang, Junjie Ji, Hongwei Xie, Taisong Pan, Dongpeng Fan, Linlong Liang, Longpeng Yang, Binbin Jiang, Peng Li, Min Gao, Jia Zhu, Guang Yao, Dongfeng Xue, Yuan Lin","doi":"10.1038/s41528-025-00429-0","DOIUrl":null,"url":null,"abstract":"<p>Stretchable electronics hold promise but remain limited to low‑power use due to poor heat dissipation. We present a three-dimensional (3D) integration strategy combining elastomeric material modification, 3D printing, and laser etching to fabricate stretchable thermoelectric devices (TEDs) with enhanced refrigeration capabilities. The device features a 3D architecture integrating embedded microfluidics with multilayer thermoelectric networks, providing improved heat exchange capacity suitable for high thermal design power (TDP) requirements. The device achieves ~10 °C environmental and 11 °C on-skin temperature reduction with precise control. Furthermore, by integrating a temperature sensor and control circuit with the 3D TED, a wearable closed-loop system is developed. Benefiting from the improved device performance and advanced control algorithms, this system enables accurate and rapid regulation of skin temperature, demonstrating potential applications in virtual temperature and pain sensation. The integration method proposed here may offer a generalizable approach for advancing high-power stretchable electronics, thereby broadening their range of applications.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"39 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic-enabled three-dimensional stretchable thermoelectrics\",\"authors\":\"Zhenlong Huang, Tao Chen, Yan Jiang, Rui Zhou, Yizhuo Wang, Junjie Ji, Hongwei Xie, Taisong Pan, Dongpeng Fan, Linlong Liang, Longpeng Yang, Binbin Jiang, Peng Li, Min Gao, Jia Zhu, Guang Yao, Dongfeng Xue, Yuan Lin\",\"doi\":\"10.1038/s41528-025-00429-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stretchable electronics hold promise but remain limited to low‑power use due to poor heat dissipation. We present a three-dimensional (3D) integration strategy combining elastomeric material modification, 3D printing, and laser etching to fabricate stretchable thermoelectric devices (TEDs) with enhanced refrigeration capabilities. The device features a 3D architecture integrating embedded microfluidics with multilayer thermoelectric networks, providing improved heat exchange capacity suitable for high thermal design power (TDP) requirements. The device achieves ~10 °C environmental and 11 °C on-skin temperature reduction with precise control. Furthermore, by integrating a temperature sensor and control circuit with the 3D TED, a wearable closed-loop system is developed. Benefiting from the improved device performance and advanced control algorithms, this system enables accurate and rapid regulation of skin temperature, demonstrating potential applications in virtual temperature and pain sensation. The integration method proposed here may offer a generalizable approach for advancing high-power stretchable electronics, thereby broadening their range of applications.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00429-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00429-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可拉伸电子产品有希望,但由于散热不良,仍然限制在低功耗使用。我们提出了一种三维(3D)集成策略,结合弹性材料改性,3D打印和激光蚀刻来制造具有增强制冷能力的可拉伸热电器件(ted)。该设备具有集成嵌入式微流体和多层热电网络的3D架构,提供适合高热设计功率(TDP)要求的改进的热交换能力。该设备可实现~10°C环境温度和11°C皮肤温度的精确控制。此外,通过将温度传感器和控制电路与3D TED集成,开发了可穿戴闭环系统。得益于改进的设备性能和先进的控制算法,该系统能够准确快速地调节皮肤温度,展示了在虚拟温度和疼痛感觉方面的潜在应用。本文提出的集成方法为推进大功率可拉伸电子器件提供了一种可推广的方法,从而拓宽了其应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microfluidic-enabled three-dimensional stretchable thermoelectrics

Microfluidic-enabled three-dimensional stretchable thermoelectrics

Stretchable electronics hold promise but remain limited to low‑power use due to poor heat dissipation. We present a three-dimensional (3D) integration strategy combining elastomeric material modification, 3D printing, and laser etching to fabricate stretchable thermoelectric devices (TEDs) with enhanced refrigeration capabilities. The device features a 3D architecture integrating embedded microfluidics with multilayer thermoelectric networks, providing improved heat exchange capacity suitable for high thermal design power (TDP) requirements. The device achieves ~10 °C environmental and 11 °C on-skin temperature reduction with precise control. Furthermore, by integrating a temperature sensor and control circuit with the 3D TED, a wearable closed-loop system is developed. Benefiting from the improved device performance and advanced control algorithms, this system enables accurate and rapid regulation of skin temperature, demonstrating potential applications in virtual temperature and pain sensation. The integration method proposed here may offer a generalizable approach for advancing high-power stretchable electronics, thereby broadening their range of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信