通过纳米结构工程和相变促进高熵合金的生物相容性和力学性能演化

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Thanh Tam Nguyen , Payam Edalati , Shivam Dangwal , Karina Danielle Pereira , Alessandra Cremasco , Ricardo Floriano , Augusto Ducati Luchessi , Kaveh Edalati
{"title":"通过纳米结构工程和相变促进高熵合金的生物相容性和力学性能演化","authors":"Thanh Tam Nguyen ,&nbsp;Payam Edalati ,&nbsp;Shivam Dangwal ,&nbsp;Karina Danielle Pereira ,&nbsp;Alessandra Cremasco ,&nbsp;Ricardo Floriano ,&nbsp;Augusto Ducati Luchessi ,&nbsp;Kaveh Edalati","doi":"10.1016/j.jallcom.2025.181438","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs), as multi-component materials with high configurational entropy, have garnered significant attention as new biomaterials; still, their low yield stress and high elastic modulus need to be overcome for future biomedical applications. In this study, nanograin generation is used to enhance the strength and phase transformation is employed to reduce the elastic modulus of a biocompatible Ti-Zr-Hf-Nb-Ta-based HEA. The alloy is treated via the high-pressure torsion (HPT) process, leading to (i) a BCC (body-centered cubic) to ω phase transformation with <span><math><mrow><msub><mrow><mo>[</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>01</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>BCC</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>[</mo><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>1</mn><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>BCC</mi></mrow></msub></mrow></math></span> through a twining mechanism, (ii) nanograin formation with a mean grain size of 20 ± 14 nm, and (iii) dislocation generation particularly close to BCC-ω interphase boundaries. These structural and microstructural features enhance hardness, increase tensile strength up to 2130 MPa, achieve tensile elongation exceeding 13 %, reduce elastic modulus down to 69 GPa and improve biocompatibility. Additionally, the HEA exhibits improved anodization, resulting in a homogenous distribution of oxide nanotubes on the surface with a smaller tube diameter and a higher tube length compared to pure titanium. These remarkable properties, which are engineered by the generation of defective nanograins and the co-existence of BCC and metastable ω phases, highlight the potential of HEAs treated using severe plastic deformation for future biomedical usage, particularly in the orthopedic sector.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1035 ","pages":"Article 181438"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting biocompatibility and mechanical property evolution in a high-entropy alloy via nanostructure engineering and phase transformations\",\"authors\":\"Thanh Tam Nguyen ,&nbsp;Payam Edalati ,&nbsp;Shivam Dangwal ,&nbsp;Karina Danielle Pereira ,&nbsp;Alessandra Cremasco ,&nbsp;Ricardo Floriano ,&nbsp;Augusto Ducati Luchessi ,&nbsp;Kaveh Edalati\",\"doi\":\"10.1016/j.jallcom.2025.181438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy alloys (HEAs), as multi-component materials with high configurational entropy, have garnered significant attention as new biomaterials; still, their low yield stress and high elastic modulus need to be overcome for future biomedical applications. In this study, nanograin generation is used to enhance the strength and phase transformation is employed to reduce the elastic modulus of a biocompatible Ti-Zr-Hf-Nb-Ta-based HEA. The alloy is treated via the high-pressure torsion (HPT) process, leading to (i) a BCC (body-centered cubic) to ω phase transformation with <span><math><mrow><msub><mrow><mo>[</mo><mn>10</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>01</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>BCC</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mo>[</mo><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>1</mn><mo>]</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>¯</mo></mover><mo>]</mo></mrow><mrow><mi>BCC</mi></mrow></msub></mrow></math></span> through a twining mechanism, (ii) nanograin formation with a mean grain size of 20 ± 14 nm, and (iii) dislocation generation particularly close to BCC-ω interphase boundaries. These structural and microstructural features enhance hardness, increase tensile strength up to 2130 MPa, achieve tensile elongation exceeding 13 %, reduce elastic modulus down to 69 GPa and improve biocompatibility. Additionally, the HEA exhibits improved anodization, resulting in a homogenous distribution of oxide nanotubes on the surface with a smaller tube diameter and a higher tube length compared to pure titanium. These remarkable properties, which are engineered by the generation of defective nanograins and the co-existence of BCC and metastable ω phases, highlight the potential of HEAs treated using severe plastic deformation for future biomedical usage, particularly in the orthopedic sector.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1035 \",\"pages\":\"Article 181438\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825029998\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825029998","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(high -entropy alloys, HEAs)作为一种具有高构型熵的多组分材料,作为新型生物材料受到了广泛的关注。然而,在未来的生物医学应用中,它们的低屈服应力和高弹性模量需要克服。在这项研究中,纳米颗粒的产生是为了提高强度和相转变是为了降低生物相容性的ti - zr - hf - nb - ta基HEA的弹性模量。通过高压扭转(HPT)工艺处理合金,导致(i) BCC(体心立方)向ω相转变,形成[101¯]ω//[011¯]BCC[101¯]ω//[011¯]BCC和[21¯1]ω//[1¯21¯]BCC[21¯1]ω//[1¯21¯]BCC, (ii)形成平均晶粒尺寸为20±14 nm的纳米晶粒,(iii)位错的产生特别接近BCC-ω相边界。这些结构和微观结构特征提高了硬度,使抗拉强度提高到2130 MPa,拉伸伸长率超过13%,弹性模量降低到69 GPa,提高了生物相容性。此外,HEA的阳极氧化性能得到了改善,使得氧化纳米管在表面分布均匀,管径比纯钛小,管长比纯钛长。通过产生缺陷纳米颗粒以及BCC和亚稳ω相的共存,这些显著的性能突出了HEAs在未来生物医学应用中的潜力,特别是在骨科领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting biocompatibility and mechanical property evolution in a high-entropy alloy via nanostructure engineering and phase transformations
High-entropy alloys (HEAs), as multi-component materials with high configurational entropy, have garnered significant attention as new biomaterials; still, their low yield stress and high elastic modulus need to be overcome for future biomedical applications. In this study, nanograin generation is used to enhance the strength and phase transformation is employed to reduce the elastic modulus of a biocompatible Ti-Zr-Hf-Nb-Ta-based HEA. The alloy is treated via the high-pressure torsion (HPT) process, leading to (i) a BCC (body-centered cubic) to ω phase transformation with [101¯]ω//[011¯]BCC and [21¯1]ω//[1¯21¯]BCC through a twining mechanism, (ii) nanograin formation with a mean grain size of 20 ± 14 nm, and (iii) dislocation generation particularly close to BCC-ω interphase boundaries. These structural and microstructural features enhance hardness, increase tensile strength up to 2130 MPa, achieve tensile elongation exceeding 13 %, reduce elastic modulus down to 69 GPa and improve biocompatibility. Additionally, the HEA exhibits improved anodization, resulting in a homogenous distribution of oxide nanotubes on the surface with a smaller tube diameter and a higher tube length compared to pure titanium. These remarkable properties, which are engineered by the generation of defective nanograins and the co-existence of BCC and metastable ω phases, highlight the potential of HEAs treated using severe plastic deformation for future biomedical usage, particularly in the orthopedic sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信