{"title":"利用计算流体动力学建模超低温霜形成的新方法","authors":"Joshua Chang Qai Wong, Biao Sun, Milinkumar Shah, Ranjeet P. Utikar, Vishnu Pareek","doi":"10.1002/aic.18925","DOIUrl":null,"url":null,"abstract":"This study presents the development of a computational fluid dynamics model for predicting ultra‐low temperatures (less than −100°C). The frost formation rate was characterized using dimensionless numbers derived from operating conditions. To better capture the underlying physical phenomena of ultra‐low temperature frosting, various physical parameters were introduced and systematically adjusted. Additionally, an ice deposition model—often overlooked in existing studies—was incorporated to enhance the model's accuracy. The influence of each parameter on predicted frost thickness was analyzed, and the simulation results were validated against experimental data. Using the established model, the impact of operating conditions on frost growth was investigated. The predicted trends in frost growth under varying conditions showed strong agreement with experimental observations. This model lays the foundation for simulating ultra‐low frost formation in more complex geometries at different operating conditions.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"142 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel approach to modeling ultra‐low temperature frost formation using Computational Fluid Dynamics\",\"authors\":\"Joshua Chang Qai Wong, Biao Sun, Milinkumar Shah, Ranjeet P. Utikar, Vishnu Pareek\",\"doi\":\"10.1002/aic.18925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the development of a computational fluid dynamics model for predicting ultra‐low temperatures (less than −100°C). The frost formation rate was characterized using dimensionless numbers derived from operating conditions. To better capture the underlying physical phenomena of ultra‐low temperature frosting, various physical parameters were introduced and systematically adjusted. Additionally, an ice deposition model—often overlooked in existing studies—was incorporated to enhance the model's accuracy. The influence of each parameter on predicted frost thickness was analyzed, and the simulation results were validated against experimental data. Using the established model, the impact of operating conditions on frost growth was investigated. The predicted trends in frost growth under varying conditions showed strong agreement with experimental observations. This model lays the foundation for simulating ultra‐low frost formation in more complex geometries at different operating conditions.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18925\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18925","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Novel approach to modeling ultra‐low temperature frost formation using Computational Fluid Dynamics
This study presents the development of a computational fluid dynamics model for predicting ultra‐low temperatures (less than −100°C). The frost formation rate was characterized using dimensionless numbers derived from operating conditions. To better capture the underlying physical phenomena of ultra‐low temperature frosting, various physical parameters were introduced and systematically adjusted. Additionally, an ice deposition model—often overlooked in existing studies—was incorporated to enhance the model's accuracy. The influence of each parameter on predicted frost thickness was analyzed, and the simulation results were validated against experimental data. Using the established model, the impact of operating conditions on frost growth was investigated. The predicted trends in frost growth under varying conditions showed strong agreement with experimental observations. This model lays the foundation for simulating ultra‐low frost formation in more complex geometries at different operating conditions.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.