Heijun Jeong, Zeki Hayran, Yuan Liu, Yahui Xiao, Hwaseob Lee, Zi Wang, Jonathan Klamkin, Francesco Monticone, Tingyi Gu
{"title":"具有非对称介质超表面的宽带低损耗单向反射芯片","authors":"Heijun Jeong, Zeki Hayran, Yuan Liu, Yahui Xiao, Hwaseob Lee, Zi Wang, Jonathan Klamkin, Francesco Monticone, Tingyi Gu","doi":"10.1002/lpor.202500216","DOIUrl":null,"url":null,"abstract":"Metasurface has emerged as a powerful platform for controlling light at subwavelength thickness, enabling new functionalities for imaging, polarization manipulation, and angular momentum conversion within a flat surface. An integrated asymmetric metasurface simultaneously achieving broadband, low loss forward power transmission, and significant back reflection suppression in multi‐mode waveguides is explored. The tapering along the direction of light propagation leads to low loss and space‐efficient mode conversion. Enhanced by a double‐flipped structure, a thin (2.5 µm) metasurface can simultaneously achieve high conversion efficiency (>80%), and back‐reflection efficiency of 90% over a 200 nm wavelength range. Such single‐side reflectors can be one of the enabling components for gain‐integrated adaptive optics on a chip.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"6 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband Low‐Loss Unidirectional Reflection On‐Chip with Asymmetric Dielectric Metasurface\",\"authors\":\"Heijun Jeong, Zeki Hayran, Yuan Liu, Yahui Xiao, Hwaseob Lee, Zi Wang, Jonathan Klamkin, Francesco Monticone, Tingyi Gu\",\"doi\":\"10.1002/lpor.202500216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurface has emerged as a powerful platform for controlling light at subwavelength thickness, enabling new functionalities for imaging, polarization manipulation, and angular momentum conversion within a flat surface. An integrated asymmetric metasurface simultaneously achieving broadband, low loss forward power transmission, and significant back reflection suppression in multi‐mode waveguides is explored. The tapering along the direction of light propagation leads to low loss and space‐efficient mode conversion. Enhanced by a double‐flipped structure, a thin (2.5 µm) metasurface can simultaneously achieve high conversion efficiency (>80%), and back‐reflection efficiency of 90% over a 200 nm wavelength range. Such single‐side reflectors can be one of the enabling components for gain‐integrated adaptive optics on a chip.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500216\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500216","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Broadband Low‐Loss Unidirectional Reflection On‐Chip with Asymmetric Dielectric Metasurface
Metasurface has emerged as a powerful platform for controlling light at subwavelength thickness, enabling new functionalities for imaging, polarization manipulation, and angular momentum conversion within a flat surface. An integrated asymmetric metasurface simultaneously achieving broadband, low loss forward power transmission, and significant back reflection suppression in multi‐mode waveguides is explored. The tapering along the direction of light propagation leads to low loss and space‐efficient mode conversion. Enhanced by a double‐flipped structure, a thin (2.5 µm) metasurface can simultaneously achieve high conversion efficiency (>80%), and back‐reflection efficiency of 90% over a 200 nm wavelength range. Such single‐side reflectors can be one of the enabling components for gain‐integrated adaptive optics on a chip.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.