人工写作和chatgpt生成的英语研究论文摘要中的反身性:元语篇的比较

IF 4.2 1区 文学 Q1 LINGUISTICS
Man Zhang, Jiawei Zhang
{"title":"人工写作和chatgpt生成的英语研究论文摘要中的反身性:元语篇的比较","authors":"Man Zhang, Jiawei Zhang","doi":"10.1093/applin/amaf032","DOIUrl":null,"url":null,"abstract":"Reflexivity, a unique feature of human language, is a key indicator evaluating the performance of ChatGPT in text generation. Comparing reflexivity in human-written and ChatGPT-generated texts could reveal how well ChatGPT could capture the fundamental features of human language. Using a self-built corpus and adopting a bottom-up approach and statistical methods, this study compares the reflexive language, metadiscourse, in human-written and ChatGPT-generated English research article abstracts. Results show that in both types of abstracts, metadiscourse fulfills three broad and eight specific discourse functions: Referring to text participants (Referring to writer, Referring to text), Describing text actions (Introducing, Arguing, Finding, Presenting), Describing text circumstances (Phoric marking, Code glossing). However, metadiscourse markers are much more prevalent in ChatGPT-generated abstracts. In addition, human-written abstracts employ metadiscourse markers mainly for writer-oriented introducing, while ChatGPT-generated abstracts for text-oriented introducing. Possible reasons for the similarities and differences are related to ChatGPT’s working mechanism, the training dataset, and writing rules learnt by ChatGPT. This research contributes to the development of large language models and artificial intelligence output detectors, writing instruction and practice, and metadiscourse research.","PeriodicalId":48234,"journal":{"name":"Applied Linguistics","volume":"70 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflexivity in human-written and ChatGPT-generated English research article abstracts: A comparison of metadiscourse\",\"authors\":\"Man Zhang, Jiawei Zhang\",\"doi\":\"10.1093/applin/amaf032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflexivity, a unique feature of human language, is a key indicator evaluating the performance of ChatGPT in text generation. Comparing reflexivity in human-written and ChatGPT-generated texts could reveal how well ChatGPT could capture the fundamental features of human language. Using a self-built corpus and adopting a bottom-up approach and statistical methods, this study compares the reflexive language, metadiscourse, in human-written and ChatGPT-generated English research article abstracts. Results show that in both types of abstracts, metadiscourse fulfills three broad and eight specific discourse functions: Referring to text participants (Referring to writer, Referring to text), Describing text actions (Introducing, Arguing, Finding, Presenting), Describing text circumstances (Phoric marking, Code glossing). However, metadiscourse markers are much more prevalent in ChatGPT-generated abstracts. In addition, human-written abstracts employ metadiscourse markers mainly for writer-oriented introducing, while ChatGPT-generated abstracts for text-oriented introducing. Possible reasons for the similarities and differences are related to ChatGPT’s working mechanism, the training dataset, and writing rules learnt by ChatGPT. This research contributes to the development of large language models and artificial intelligence output detectors, writing instruction and practice, and metadiscourse research.\",\"PeriodicalId\":48234,\"journal\":{\"name\":\"Applied Linguistics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1093/applin/amaf032\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/applin/amaf032","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

反身性是人类语言的一个独特特征,是ChatGPT在文本生成中评价其性能的关键指标。比较人类书写的文本和ChatGPT生成的文本中的反身性可以揭示ChatGPT如何很好地捕捉人类语言的基本特征。本研究使用自建的语料库,采用自底向上的方法和统计方法,比较了人工写作和chatgpt生成的英语研究论文摘要中的反思性语言——元语篇。结果表明,在这两种类型的摘要中,元话语都实现了三种广泛和八种具体的话语功能:指涉文本参与者(指作者、指文本)、描述文本行为(介绍、论证、发现、呈现)、描述文本环境(文字标记、代码修饰)。然而,元话语标记在chatgpt生成的摘要中更为普遍。此外,人工编写的摘要使用元话语标记主要用于面向作者的介绍,而chatgpt生成的摘要用于面向文本的介绍。相似和不同的可能原因与ChatGPT的工作机制、训练数据集和ChatGPT学习的写作规则有关。这项研究有助于开发大型语言模型和人工智能输出检测器,写作指导和实践,以及元语篇研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflexivity in human-written and ChatGPT-generated English research article abstracts: A comparison of metadiscourse
Reflexivity, a unique feature of human language, is a key indicator evaluating the performance of ChatGPT in text generation. Comparing reflexivity in human-written and ChatGPT-generated texts could reveal how well ChatGPT could capture the fundamental features of human language. Using a self-built corpus and adopting a bottom-up approach and statistical methods, this study compares the reflexive language, metadiscourse, in human-written and ChatGPT-generated English research article abstracts. Results show that in both types of abstracts, metadiscourse fulfills three broad and eight specific discourse functions: Referring to text participants (Referring to writer, Referring to text), Describing text actions (Introducing, Arguing, Finding, Presenting), Describing text circumstances (Phoric marking, Code glossing). However, metadiscourse markers are much more prevalent in ChatGPT-generated abstracts. In addition, human-written abstracts employ metadiscourse markers mainly for writer-oriented introducing, while ChatGPT-generated abstracts for text-oriented introducing. Possible reasons for the similarities and differences are related to ChatGPT’s working mechanism, the training dataset, and writing rules learnt by ChatGPT. This research contributes to the development of large language models and artificial intelligence output detectors, writing instruction and practice, and metadiscourse research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Linguistics
Applied Linguistics LINGUISTICS-
CiteScore
7.60
自引率
8.30%
发文量
0
期刊介绍: Applied Linguistics publishes research into language with relevance to real-world problems. The journal is keen to help make connections between fields, theories, research methods, and scholarly discourses, and welcomes contributions which critically reflect on current practices in applied linguistic research. It promotes scholarly and scientific discussion of issues that unite or divide scholars in applied linguistics. It is less interested in the ad hoc solution of particular problems and more interested in the handling of problems in a principled way by reference to theoretical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信