机器引导的双目标蛋白工程用于脱免疫和治疗功能。

Eric Wolfsberg, Jean-Sebastien Paul, Josh Tycko, Binbin Chen, Michael C Bassik, Lacramioara Bintu, Ash A Alizadeh, Xiaojing J Gao
{"title":"机器引导的双目标蛋白工程用于脱免疫和治疗功能。","authors":"Eric Wolfsberg, Jean-Sebastien Paul, Josh Tycko, Binbin Chen, Michael C Bassik, Lacramioara Bintu, Ash A Alizadeh, Xiaojing J Gao","doi":"10.1016/j.cels.2025.101299","DOIUrl":null,"url":null,"abstract":"<p><p>Cell and gene therapies often express nonhuman proteins, which carry a risk of anti-therapy immunogenicity. An emerging consensus is to instead use modified human protein domains, but these domains include nonhuman peptides around mutated residues and at interdomain junctions, which may also be immunogenic. We present a modular workflow to optimize protein function and minimize immunogenicity by using existing machine learning models that predict protein function and peptide-major histocompatibility complex (MHC) presentation. We first applied this workflow to existing transcriptional activation and RNA-binding domains by removing potentially immunogenic MHC II epitopes. We then generated small-molecule-controllable transcription factors with human-derived DNA-binding domains targeting non-genomic DNA sequences. Finally, we established a workflow for creating deimmunized zinc-finger arrays to target arbitrary DNA sequences and upregulated two therapeutically relevant genes, utrophin (UTRN) and sodium voltage-gated channel alpha subunit 1 (SCN1A), using it. Our modular workflow offers a way to potentially make cell and gene therapies safer and more efficacious using state-of-the-art algorithms.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101299"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.\",\"authors\":\"Eric Wolfsberg, Jean-Sebastien Paul, Josh Tycko, Binbin Chen, Michael C Bassik, Lacramioara Bintu, Ash A Alizadeh, Xiaojing J Gao\",\"doi\":\"10.1016/j.cels.2025.101299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell and gene therapies often express nonhuman proteins, which carry a risk of anti-therapy immunogenicity. An emerging consensus is to instead use modified human protein domains, but these domains include nonhuman peptides around mutated residues and at interdomain junctions, which may also be immunogenic. We present a modular workflow to optimize protein function and minimize immunogenicity by using existing machine learning models that predict protein function and peptide-major histocompatibility complex (MHC) presentation. We first applied this workflow to existing transcriptional activation and RNA-binding domains by removing potentially immunogenic MHC II epitopes. We then generated small-molecule-controllable transcription factors with human-derived DNA-binding domains targeting non-genomic DNA sequences. Finally, we established a workflow for creating deimmunized zinc-finger arrays to target arbitrary DNA sequences and upregulated two therapeutically relevant genes, utrophin (UTRN) and sodium voltage-gated channel alpha subunit 1 (SCN1A), using it. Our modular workflow offers a way to potentially make cell and gene therapies safer and more efficacious using state-of-the-art algorithms.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞和基因治疗通常表达非人类蛋白质,这有抗治疗免疫原性的风险。一种新兴的共识是使用修饰的人类蛋白结构域,但这些结构域包括突变残基周围和结构域间连接处的非人类肽,它们也可能具有免疫原性。我们提出了一个模块化的工作流程,通过使用现有的预测蛋白质功能和肽-主要组织相容性复合体(MHC)表现的机器学习模型来优化蛋白质功能和最小化免疫原性。我们首先通过去除潜在的免疫原性MHC II表位,将该工作流程应用于现有的转录激活和rna结合域。然后,我们生成了小分子可控的转录因子,这些转录因子具有人源性DNA结合域,靶向非基因组DNA序列。最后,我们建立了一个工作流程来创建去免疫锌指阵列靶向任意DNA序列,并上调两个治疗相关基因,UTRN (UTRN)和钠电压门控通道α亚单位1 (SCN1A),使用它。我们的模块化工作流程提供了一种潜在的方法,使细胞和基因治疗更安全,更有效,使用最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.

Cell and gene therapies often express nonhuman proteins, which carry a risk of anti-therapy immunogenicity. An emerging consensus is to instead use modified human protein domains, but these domains include nonhuman peptides around mutated residues and at interdomain junctions, which may also be immunogenic. We present a modular workflow to optimize protein function and minimize immunogenicity by using existing machine learning models that predict protein function and peptide-major histocompatibility complex (MHC) presentation. We first applied this workflow to existing transcriptional activation and RNA-binding domains by removing potentially immunogenic MHC II epitopes. We then generated small-molecule-controllable transcription factors with human-derived DNA-binding domains targeting non-genomic DNA sequences. Finally, we established a workflow for creating deimmunized zinc-finger arrays to target arbitrary DNA sequences and upregulated two therapeutically relevant genes, utrophin (UTRN) and sodium voltage-gated channel alpha subunit 1 (SCN1A), using it. Our modular workflow offers a way to potentially make cell and gene therapies safer and more efficacious using state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信