胶原样蛋白在大肠杆菌中的表达研究进展。

IF 7.7 Q1 ENGINEERING, BIOMEDICAL
John A M Ramshaw, Veronica Glattauer, Jerome A Werkmeister
{"title":"胶原样蛋白在大肠杆菌中的表达研究进展。","authors":"John A M Ramshaw, Veronica Glattauer, Jerome A Werkmeister","doi":"10.1088/2516-1091/ade106","DOIUrl":null,"url":null,"abstract":"<p><p>The use of<i>E. coli</i>for the expression of various collagen-like triple helical protein constructs has continued to develop significantly, and certain commercially made proteins are now available. The use of auxotroph designs to assist in the expression of hydroxylated proteins is an important development. A range of other new constructs have been described, including those that contain a segment of a natural collagen sequence and those that are based on collagen-like proteins from prokaryotes, especially the Scl2 protein from<i>Streptococcus pyogenes</i>. The other constructs that have gained increased attention are those where multiple copies, often 16, of a small native collagen sequence are expressed as tandem repeated sequences, with these being of particular interest for biomedical applications. Ascertaining which construct is being used, however, can create difficulties when the same acronym is used for different constructs, and many are frequently described as 'humanized' even though no sequence changes have been included to make the construct resemble a human sequence more closely.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress on production of collagen-like proteins by expression in Escherichia coli.\",\"authors\":\"John A M Ramshaw, Veronica Glattauer, Jerome A Werkmeister\",\"doi\":\"10.1088/2516-1091/ade106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of<i>E. coli</i>for the expression of various collagen-like triple helical protein constructs has continued to develop significantly, and certain commercially made proteins are now available. The use of auxotroph designs to assist in the expression of hydroxylated proteins is an important development. A range of other new constructs have been described, including those that contain a segment of a natural collagen sequence and those that are based on collagen-like proteins from prokaryotes, especially the Scl2 protein from<i>Streptococcus pyogenes</i>. The other constructs that have gained increased attention are those where multiple copies, often 16, of a small native collagen sequence are expressed as tandem repeated sequences, with these being of particular interest for biomedical applications. Ascertaining which construct is being used, however, can create difficulties when the same acronym is used for different constructs, and many are frequently described as 'humanized' even though no sequence changes have been included to make the construct resemble a human sequence more closely.</p>\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/ade106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ade106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用大肠杆菌表达各种胶原样三螺旋蛋白结构已继续显著发展,某些商业制造的蛋白质现在是可用的。利用营养缺陷设计来辅助羟基化蛋白的表达是一项重要的发展。一系列其他的新结构已经被描述,包括那些包含一段天然胶原蛋白序列的结构和那些基于原核生物的胶原样蛋白的结构,特别是来自化脓性链球菌的Scl2蛋白。其他已获得越来越多关注的结构是那些将小的天然胶原蛋白序列的多个拷贝(通常为16个)表达为串联重复序列的结构,这些结构对生物医学应用特别感兴趣。然而,当相同的首字母缩略词用于不同的结构时,确定正在使用的结构可能会产生困难,并且许多结构经常被描述为“人性化”,即使没有包括序列变化以使结构更像人类序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress on production of collagen-like proteins by expression in Escherichia coli.

The use ofE. colifor the expression of various collagen-like triple helical protein constructs has continued to develop significantly, and certain commercially made proteins are now available. The use of auxotroph designs to assist in the expression of hydroxylated proteins is an important development. A range of other new constructs have been described, including those that contain a segment of a natural collagen sequence and those that are based on collagen-like proteins from prokaryotes, especially the Scl2 protein fromStreptococcus pyogenes. The other constructs that have gained increased attention are those where multiple copies, often 16, of a small native collagen sequence are expressed as tandem repeated sequences, with these being of particular interest for biomedical applications. Ascertaining which construct is being used, however, can create difficulties when the same acronym is used for different constructs, and many are frequently described as 'humanized' even though no sequence changes have been included to make the construct resemble a human sequence more closely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信