Huan Liao, Da Lu, Sonali N Reisinger, Mehrshad Rashidi Mehrabadi, Carolina Gubert, Anthony J Hannan
{"title":"父亲环境暴露和经历对后代表型的表观遗传影响。","authors":"Huan Liao, Da Lu, Sonali N Reisinger, Mehrshad Rashidi Mehrabadi, Carolina Gubert, Anthony J Hannan","doi":"10.1016/j.tig.2025.04.015","DOIUrl":null,"url":null,"abstract":"<p><p>Recent decades have revealed increasing evidence for epigenetic inheritance through paternal environmental exposures and experiences, affecting offspring health outcomes across diverse species. Key epigenetic mediators in sperm may include DNA methylation, chromatin modifications, as well as small and long non-coding (nc)RNAs. Identified environmental influences extend beyond lifestyle factors (e.g., exercise, diet, alcohol, and nicotine use) to include stress, infections, pollutants, and other toxins. Evidence from humans, rodents, and other species suggests that various paternal exposures before conception substantially shape the phenotypes in offspring, via developmental modulation, including changes to brain and behavior, metabolism, endocrinology, and physiology. These findings raise concerns regarding human epigenetic inheritance, because the relevant environmental exposures have changed significantly in recent decades, potentially increasing the risk of future generations for various disorders ('transgenerational epigenopathy'). Here, we integrate evidence for paternal environmental exposures affecting offspring phenotypes, and associated epigenetic mechanisms, critically discussing potential implications for medicine and other scientific fields.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic effects of paternal environmental exposures and experiences on offspring phenotypes.\",\"authors\":\"Huan Liao, Da Lu, Sonali N Reisinger, Mehrshad Rashidi Mehrabadi, Carolina Gubert, Anthony J Hannan\",\"doi\":\"10.1016/j.tig.2025.04.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent decades have revealed increasing evidence for epigenetic inheritance through paternal environmental exposures and experiences, affecting offspring health outcomes across diverse species. Key epigenetic mediators in sperm may include DNA methylation, chromatin modifications, as well as small and long non-coding (nc)RNAs. Identified environmental influences extend beyond lifestyle factors (e.g., exercise, diet, alcohol, and nicotine use) to include stress, infections, pollutants, and other toxins. Evidence from humans, rodents, and other species suggests that various paternal exposures before conception substantially shape the phenotypes in offspring, via developmental modulation, including changes to brain and behavior, metabolism, endocrinology, and physiology. These findings raise concerns regarding human epigenetic inheritance, because the relevant environmental exposures have changed significantly in recent decades, potentially increasing the risk of future generations for various disorders ('transgenerational epigenopathy'). Here, we integrate evidence for paternal environmental exposures affecting offspring phenotypes, and associated epigenetic mechanisms, critically discussing potential implications for medicine and other scientific fields.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.04.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.04.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Epigenetic effects of paternal environmental exposures and experiences on offspring phenotypes.
Recent decades have revealed increasing evidence for epigenetic inheritance through paternal environmental exposures and experiences, affecting offspring health outcomes across diverse species. Key epigenetic mediators in sperm may include DNA methylation, chromatin modifications, as well as small and long non-coding (nc)RNAs. Identified environmental influences extend beyond lifestyle factors (e.g., exercise, diet, alcohol, and nicotine use) to include stress, infections, pollutants, and other toxins. Evidence from humans, rodents, and other species suggests that various paternal exposures before conception substantially shape the phenotypes in offspring, via developmental modulation, including changes to brain and behavior, metabolism, endocrinology, and physiology. These findings raise concerns regarding human epigenetic inheritance, because the relevant environmental exposures have changed significantly in recent decades, potentially increasing the risk of future generations for various disorders ('transgenerational epigenopathy'). Here, we integrate evidence for paternal environmental exposures affecting offspring phenotypes, and associated epigenetic mechanisms, critically discussing potential implications for medicine and other scientific fields.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.