Hyoeun Park, Young-Kwon Seo, Yoshie Arai, Soo-Hong Lee
{"title":"细胞外囊泡大规模生产的理化调控策略。","authors":"Hyoeun Park, Young-Kwon Seo, Yoshie Arai, Soo-Hong Lee","doi":"10.1007/s13770-025-00726-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles (EVs) have attracted expanded attention as vehicles for the diagnosis and therapy of diseases and regenerative medicine due to their biocompatibility, efficient cellular uptake ability, and capacity to transport biologically active molecules. However, the low secretion yield of EVs and the challenges of large-scale production remain the main barriers to their extensive clinical use.</p><p><strong>Methods and results: </strong>This review explores recent strategies to enhance EV production in cell culture systems, focusing on chemical stimulation, mechanical stimulation, and structural stimulation. First, we review chemical stimulation strategies for modulating culture conditions using chemical stimulation, including nutrient composition, pH, temperature, oxygen levels, intracellular cholesterol, and oxidative stress. Second, we examine mechanical stimulation strategies, including shear stress, irradiation, and ultrasound. Third, we explore structural stimulation strategies, such as three-dimensional (3D) culture systems involving spheroid-based culture, as well as the use of bioreactors and scaffolds. In addition, cell-derived nanovesicles containing cell membrane and cellular component, which can be more easily mass-produced compared to EVs, are proposed as an alternative to EVs.</p><p><strong>Conclusion: </strong>Future research should focus on developing cost-effective and scalable EV production methods while improving purification techniques to ensure a high yield without compromising functional integrity. Moreover, integrating optimized stimulation strategies-such as refining 3D culture systems, bioreactor designs, and mechanical stimulation methods-could further enhance EV secretion. Addressing these challenges is essential for advancing EV-based applications in both research and clinical practice.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"569-591"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209107/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Modulation Strategies for Mass Production of Extracellular Vesicle.\",\"authors\":\"Hyoeun Park, Young-Kwon Seo, Yoshie Arai, Soo-Hong Lee\",\"doi\":\"10.1007/s13770-025-00726-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Extracellular vesicles (EVs) have attracted expanded attention as vehicles for the diagnosis and therapy of diseases and regenerative medicine due to their biocompatibility, efficient cellular uptake ability, and capacity to transport biologically active molecules. However, the low secretion yield of EVs and the challenges of large-scale production remain the main barriers to their extensive clinical use.</p><p><strong>Methods and results: </strong>This review explores recent strategies to enhance EV production in cell culture systems, focusing on chemical stimulation, mechanical stimulation, and structural stimulation. First, we review chemical stimulation strategies for modulating culture conditions using chemical stimulation, including nutrient composition, pH, temperature, oxygen levels, intracellular cholesterol, and oxidative stress. Second, we examine mechanical stimulation strategies, including shear stress, irradiation, and ultrasound. Third, we explore structural stimulation strategies, such as three-dimensional (3D) culture systems involving spheroid-based culture, as well as the use of bioreactors and scaffolds. In addition, cell-derived nanovesicles containing cell membrane and cellular component, which can be more easily mass-produced compared to EVs, are proposed as an alternative to EVs.</p><p><strong>Conclusion: </strong>Future research should focus on developing cost-effective and scalable EV production methods while improving purification techniques to ensure a high yield without compromising functional integrity. Moreover, integrating optimized stimulation strategies-such as refining 3D culture systems, bioreactor designs, and mechanical stimulation methods-could further enhance EV secretion. Addressing these challenges is essential for advancing EV-based applications in both research and clinical practice.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"569-591\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00726-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00726-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Physicochemical Modulation Strategies for Mass Production of Extracellular Vesicle.
Background: Extracellular vesicles (EVs) have attracted expanded attention as vehicles for the diagnosis and therapy of diseases and regenerative medicine due to their biocompatibility, efficient cellular uptake ability, and capacity to transport biologically active molecules. However, the low secretion yield of EVs and the challenges of large-scale production remain the main barriers to their extensive clinical use.
Methods and results: This review explores recent strategies to enhance EV production in cell culture systems, focusing on chemical stimulation, mechanical stimulation, and structural stimulation. First, we review chemical stimulation strategies for modulating culture conditions using chemical stimulation, including nutrient composition, pH, temperature, oxygen levels, intracellular cholesterol, and oxidative stress. Second, we examine mechanical stimulation strategies, including shear stress, irradiation, and ultrasound. Third, we explore structural stimulation strategies, such as three-dimensional (3D) culture systems involving spheroid-based culture, as well as the use of bioreactors and scaffolds. In addition, cell-derived nanovesicles containing cell membrane and cellular component, which can be more easily mass-produced compared to EVs, are proposed as an alternative to EVs.
Conclusion: Future research should focus on developing cost-effective and scalable EV production methods while improving purification techniques to ensure a high yield without compromising functional integrity. Moreover, integrating optimized stimulation strategies-such as refining 3D culture systems, bioreactor designs, and mechanical stimulation methods-could further enhance EV secretion. Addressing these challenges is essential for advancing EV-based applications in both research and clinical practice.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.