Rohit Salgotra, Supreet Singh, Pooja Verma, Laith Abualigah, Amir H Gandomi
{"title":"工业工程问题的突变自适应布谷鸟搜索杂交裸鼹鼠算法。","authors":"Rohit Salgotra, Supreet Singh, Pooja Verma, Laith Abualigah, Amir H Gandomi","doi":"10.1038/s41598-025-01033-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cuckoo Search (CS) is a popular algorithm used to solve numerous challenging problems. In the present work, a novel variant of CS is presented to eliminate its shortcomings. The proposed algorithm is hybridized with the naked mole rat algorithm (NMRA) to enhance the exploitative behavior of CS, and is called Mutated Adaptive Cuckoo Search Algorithm (MaCN). This new algorithm has self-adaptive properties and its key feature is to divide the solutions into multiple sections, which are often called sub-swarms. In addition, a bare-bones search mechanism is also added to enhance exploration. The use of adaptive inertia weights helps optimize the switching probability, an important CS parameter that helps to achieve a balanced operation. The proposed MaCN algorithm is tested on CEC 2005 and CEC 2014 benchmark problems. Comparative studies showed that MaCN delivers promising results in solving CEC competition benchmark problems compared to JADE, success history-based adaptive DE (SHADE), LSHADE-SPACMA and self-adaptive DE (SaDE), among others. In addition to numerical benchmarks, MaCN is used to solve the industrial engineering frame structure and a comparison with hybridization of particle swarm with passive congregation (PSOPC), shuffled frog leaping algorithm hybrid with invasive weed optimization (SFLAIWO), particle swarm ant colony optimization (PSOACO), early strategy with DE (ES-DE), and others show its superiority. In addition, the Wilcoxon rankum and the Freidmann test statistically prove the significance of the proposed MaCN algorithm. MaCN was found to score first rank for the benchmarks. The application of the MaCN algorithm to solve the design problems of the suggests that the best new results are obtained for all test cases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19655"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137593/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mutation adaptive cuckoo search hybridized naked mole rat algorithm for industrial engineering problems.\",\"authors\":\"Rohit Salgotra, Supreet Singh, Pooja Verma, Laith Abualigah, Amir H Gandomi\",\"doi\":\"10.1038/s41598-025-01033-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuckoo Search (CS) is a popular algorithm used to solve numerous challenging problems. In the present work, a novel variant of CS is presented to eliminate its shortcomings. The proposed algorithm is hybridized with the naked mole rat algorithm (NMRA) to enhance the exploitative behavior of CS, and is called Mutated Adaptive Cuckoo Search Algorithm (MaCN). This new algorithm has self-adaptive properties and its key feature is to divide the solutions into multiple sections, which are often called sub-swarms. In addition, a bare-bones search mechanism is also added to enhance exploration. The use of adaptive inertia weights helps optimize the switching probability, an important CS parameter that helps to achieve a balanced operation. The proposed MaCN algorithm is tested on CEC 2005 and CEC 2014 benchmark problems. Comparative studies showed that MaCN delivers promising results in solving CEC competition benchmark problems compared to JADE, success history-based adaptive DE (SHADE), LSHADE-SPACMA and self-adaptive DE (SaDE), among others. In addition to numerical benchmarks, MaCN is used to solve the industrial engineering frame structure and a comparison with hybridization of particle swarm with passive congregation (PSOPC), shuffled frog leaping algorithm hybrid with invasive weed optimization (SFLAIWO), particle swarm ant colony optimization (PSOACO), early strategy with DE (ES-DE), and others show its superiority. In addition, the Wilcoxon rankum and the Freidmann test statistically prove the significance of the proposed MaCN algorithm. MaCN was found to score first rank for the benchmarks. The application of the MaCN algorithm to solve the design problems of the suggests that the best new results are obtained for all test cases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19655\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-01033-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-01033-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mutation adaptive cuckoo search hybridized naked mole rat algorithm for industrial engineering problems.
Cuckoo Search (CS) is a popular algorithm used to solve numerous challenging problems. In the present work, a novel variant of CS is presented to eliminate its shortcomings. The proposed algorithm is hybridized with the naked mole rat algorithm (NMRA) to enhance the exploitative behavior of CS, and is called Mutated Adaptive Cuckoo Search Algorithm (MaCN). This new algorithm has self-adaptive properties and its key feature is to divide the solutions into multiple sections, which are often called sub-swarms. In addition, a bare-bones search mechanism is also added to enhance exploration. The use of adaptive inertia weights helps optimize the switching probability, an important CS parameter that helps to achieve a balanced operation. The proposed MaCN algorithm is tested on CEC 2005 and CEC 2014 benchmark problems. Comparative studies showed that MaCN delivers promising results in solving CEC competition benchmark problems compared to JADE, success history-based adaptive DE (SHADE), LSHADE-SPACMA and self-adaptive DE (SaDE), among others. In addition to numerical benchmarks, MaCN is used to solve the industrial engineering frame structure and a comparison with hybridization of particle swarm with passive congregation (PSOPC), shuffled frog leaping algorithm hybrid with invasive weed optimization (SFLAIWO), particle swarm ant colony optimization (PSOACO), early strategy with DE (ES-DE), and others show its superiority. In addition, the Wilcoxon rankum and the Freidmann test statistically prove the significance of the proposed MaCN algorithm. MaCN was found to score first rank for the benchmarks. The application of the MaCN algorithm to solve the design problems of the suggests that the best new results are obtained for all test cases.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.