{"title":"壳聚糖金纳米颗粒包埋诺比叶素的ph调控释放特性通过PI3K/AKT/mTOR信号通路诱导胃癌细胞凋亡。","authors":"Hongyi Qing, Ping Xie, Zhenjiang Wu, Wenhai Fan, Yuanxiao Liang, Xiulian Xu","doi":"10.1080/02652048.2025.2507638","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Gastric cancer (GC) remains a major health concern with limited effective therapies. Nanotechnology-based drug delivery systems offer targeted and efficient treatment strategies.</p><p><strong>Objective: </strong>This study aimed to develop chitosan-coated gold nanoparticles loaded with Nobiletin (Ch-AuNPs-NB) and evaluate their anticancer potential by targeting the PI3K/AKT/mTOR signaling pathway in GC.<b>Materials and Methods</b>Ch-AuNPs were synthesized by NaBH<sub>4</sub> reduction and loaded with Nobiletin using nanoprecipitation. Characterization was done using UV-Vis, FTIR, XRD, DLS, and TEM. Drug loading, encapsulation efficiency, and pH-responsive release were assessed.</p><p><strong>Results: </strong>Ch-AuNPs-NB (∼120 nm, PDI 0.247, +51 mV) showed enhanced drug loading (15%) and encapsulation efficiency (90.4%) at higher NB concentrations. The formulation demonstrated pH-responsive release over 72 hours and stability for 60 days.</p><p><strong>Discussion and conclusion: </strong>Ch-AuNPs-NB inhibited the PI3K/AKT/mTOR pathway, induced apoptosis, and arrested the cell cycle in AGS cells, highlighting its potential as a targeted GC therapy.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pH-controlled release properties of chitosan-gold nanoparticles encapsulated nobiletin to induce apoptosis through PI3K/AKT/mTOR signalling pathway on gastric cancer cell lines.\",\"authors\":\"Hongyi Qing, Ping Xie, Zhenjiang Wu, Wenhai Fan, Yuanxiao Liang, Xiulian Xu\",\"doi\":\"10.1080/02652048.2025.2507638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Gastric cancer (GC) remains a major health concern with limited effective therapies. Nanotechnology-based drug delivery systems offer targeted and efficient treatment strategies.</p><p><strong>Objective: </strong>This study aimed to develop chitosan-coated gold nanoparticles loaded with Nobiletin (Ch-AuNPs-NB) and evaluate their anticancer potential by targeting the PI3K/AKT/mTOR signaling pathway in GC.<b>Materials and Methods</b>Ch-AuNPs were synthesized by NaBH<sub>4</sub> reduction and loaded with Nobiletin using nanoprecipitation. Characterization was done using UV-Vis, FTIR, XRD, DLS, and TEM. Drug loading, encapsulation efficiency, and pH-responsive release were assessed.</p><p><strong>Results: </strong>Ch-AuNPs-NB (∼120 nm, PDI 0.247, +51 mV) showed enhanced drug loading (15%) and encapsulation efficiency (90.4%) at higher NB concentrations. The formulation demonstrated pH-responsive release over 72 hours and stability for 60 days.</p><p><strong>Discussion and conclusion: </strong>Ch-AuNPs-NB inhibited the PI3K/AKT/mTOR pathway, induced apoptosis, and arrested the cell cycle in AGS cells, highlighting its potential as a targeted GC therapy.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2025.2507638\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2507638","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
The pH-controlled release properties of chitosan-gold nanoparticles encapsulated nobiletin to induce apoptosis through PI3K/AKT/mTOR signalling pathway on gastric cancer cell lines.
Context: Gastric cancer (GC) remains a major health concern with limited effective therapies. Nanotechnology-based drug delivery systems offer targeted and efficient treatment strategies.
Objective: This study aimed to develop chitosan-coated gold nanoparticles loaded with Nobiletin (Ch-AuNPs-NB) and evaluate their anticancer potential by targeting the PI3K/AKT/mTOR signaling pathway in GC.Materials and MethodsCh-AuNPs were synthesized by NaBH4 reduction and loaded with Nobiletin using nanoprecipitation. Characterization was done using UV-Vis, FTIR, XRD, DLS, and TEM. Drug loading, encapsulation efficiency, and pH-responsive release were assessed.
Results: Ch-AuNPs-NB (∼120 nm, PDI 0.247, +51 mV) showed enhanced drug loading (15%) and encapsulation efficiency (90.4%) at higher NB concentrations. The formulation demonstrated pH-responsive release over 72 hours and stability for 60 days.
Discussion and conclusion: Ch-AuNPs-NB inhibited the PI3K/AKT/mTOR pathway, induced apoptosis, and arrested the cell cycle in AGS cells, highlighting its potential as a targeted GC therapy.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.