利用仿生生物矿化和抗菌水凝胶在感染骨缺损中快速神经化和血管化成骨。

IF 4.8 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-05-21 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1611639
Yuhao Deng, Song Chen, Maimaitiaili Tuerxun, Xuekang Xiong, Jianfei Tang
{"title":"利用仿生生物矿化和抗菌水凝胶在感染骨缺损中快速神经化和血管化成骨。","authors":"Yuhao Deng, Song Chen, Maimaitiaili Tuerxun, Xuekang Xiong, Jianfei Tang","doi":"10.3389/fbioe.2025.1611639","DOIUrl":null,"url":null,"abstract":"<p><p>Infected bone defects represent one of the most prevalent clinical conditions, affecting millions of patients annually. The local infection and necrosis associated with these defects exacerbate the injury, prolong healing times, and result in significant localized pain, presenting a substantial challenge for clinical repair. In this study, we developed a biomimetic mineralized and antibacterial imCOL1MA hydrogel by employing methacrylated COL1, composite native bone inorganic salts (CNBIS), and Magainin II-PLGA microspheres (mMicrospheres), which was further loaded with bone marrow stem cells (BMSCs) to form osteogenic engineered bone for infected bone defects repair. Briefly, we first optimized the concentration of COL1MA for BMSCs survival, then adjusted proportion of CNBIS to create an appropriate osteoinductive microenvironment, and encapsulated Magainin II in poly (lactic-co-glycolic acid) (PLGA) microsphere for long-term antimicrobial function. Consequently, the promising mineralized and antibacterial imCOL1MA was prepared using 10% COL1MA, 2% CNBIS, and 1% mMicrospheres. The imCOL1MA scaffold served as significant antimicrobial efficacy, excellent biodegradability, good biocompatibility, and osteoinductive microenvironment. As a result, the engineered bone could achieve rapid (only 4 weeks) vascularized and neuralized bone regeneration in a rabbit model of infected bone defects.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1611639"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid neuralized and vascularized osteogenesis in infected bone defect using biomimetic biomineralized and antibacterial hydrogels.\",\"authors\":\"Yuhao Deng, Song Chen, Maimaitiaili Tuerxun, Xuekang Xiong, Jianfei Tang\",\"doi\":\"10.3389/fbioe.2025.1611639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infected bone defects represent one of the most prevalent clinical conditions, affecting millions of patients annually. The local infection and necrosis associated with these defects exacerbate the injury, prolong healing times, and result in significant localized pain, presenting a substantial challenge for clinical repair. In this study, we developed a biomimetic mineralized and antibacterial imCOL1MA hydrogel by employing methacrylated COL1, composite native bone inorganic salts (CNBIS), and Magainin II-PLGA microspheres (mMicrospheres), which was further loaded with bone marrow stem cells (BMSCs) to form osteogenic engineered bone for infected bone defects repair. Briefly, we first optimized the concentration of COL1MA for BMSCs survival, then adjusted proportion of CNBIS to create an appropriate osteoinductive microenvironment, and encapsulated Magainin II in poly (lactic-co-glycolic acid) (PLGA) microsphere for long-term antimicrobial function. Consequently, the promising mineralized and antibacterial imCOL1MA was prepared using 10% COL1MA, 2% CNBIS, and 1% mMicrospheres. The imCOL1MA scaffold served as significant antimicrobial efficacy, excellent biodegradability, good biocompatibility, and osteoinductive microenvironment. As a result, the engineered bone could achieve rapid (only 4 weeks) vascularized and neuralized bone regeneration in a rabbit model of infected bone defects.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1611639\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1611639\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1611639","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

感染性骨缺损是最普遍的临床疾病之一,每年影响数百万患者。与这些缺陷相关的局部感染和坏死加剧了损伤,延长了愈合时间,并导致明显的局部疼痛,对临床修复提出了重大挑战。在这项研究中,我们开发了一种仿生矿化和抗菌的imCOL1MA水凝胶,采用甲基丙烯酸基COL1、复合天然骨无性盐(CNBIS)和Magainin II-PLGA微球(mMicrospheres),进一步负载骨髓干细胞(BMSCs)形成成骨工程骨,用于感染骨缺损修复。简单地说,我们首先优化COL1MA的浓度以促进骨髓间充质干细胞的存活,然后调整CNBIS的比例以创造合适的骨诱导微环境,并将Magainin II包埋在聚乳酸-羟基乙酸(PLGA)微球中以获得长期抗菌功能。因此,用10%的COL1MA、2%的CNBIS和1%的mmicrosphere制备了有前途的矿化抗菌imCOL1MA。imCOL1MA支架具有显著的抗菌效果、良好的生物降解性、良好的生物相容性和骨诱导微环境。结果表明,在兔感染骨缺损模型中,工程骨可以实现快速(仅4周)血管化和神经化的骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid neuralized and vascularized osteogenesis in infected bone defect using biomimetic biomineralized and antibacterial hydrogels.

Infected bone defects represent one of the most prevalent clinical conditions, affecting millions of patients annually. The local infection and necrosis associated with these defects exacerbate the injury, prolong healing times, and result in significant localized pain, presenting a substantial challenge for clinical repair. In this study, we developed a biomimetic mineralized and antibacterial imCOL1MA hydrogel by employing methacrylated COL1, composite native bone inorganic salts (CNBIS), and Magainin II-PLGA microspheres (mMicrospheres), which was further loaded with bone marrow stem cells (BMSCs) to form osteogenic engineered bone for infected bone defects repair. Briefly, we first optimized the concentration of COL1MA for BMSCs survival, then adjusted proportion of CNBIS to create an appropriate osteoinductive microenvironment, and encapsulated Magainin II in poly (lactic-co-glycolic acid) (PLGA) microsphere for long-term antimicrobial function. Consequently, the promising mineralized and antibacterial imCOL1MA was prepared using 10% COL1MA, 2% CNBIS, and 1% mMicrospheres. The imCOL1MA scaffold served as significant antimicrobial efficacy, excellent biodegradability, good biocompatibility, and osteoinductive microenvironment. As a result, the engineered bone could achieve rapid (only 4 weeks) vascularized and neuralized bone regeneration in a rabbit model of infected bone defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信