Cu掺杂NiO作为三阳离子钙钛矿太阳能电池空穴传输层的界面工程与能带对准研究。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-05 DOI:10.1002/smll.202504237
Puja, Arpit Verma, Pramod Yadav, Kanwar Singh Nalwa, Mukesh Kumar
{"title":"Cu掺杂NiO作为三阳离子钙钛矿太阳能电池空穴传输层的界面工程与能带对准研究。","authors":"Puja, Arpit Verma, Pramod Yadav, Kanwar Singh Nalwa, Mukesh Kumar","doi":"10.1002/smll.202504237","DOIUrl":null,"url":null,"abstract":"<p><p>Hole selective inorganic transport layer plays an important role for higher stability of p-i-n perovskite solar cell. Here, this study investigates optimized Cu doping in NiO hole transport layer (HTL) and studied its interface with triple cation perovskite (Cs<sub>0.05</sub>(FA<sub>0.83</sub>MA<sub>0.17</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>) absorbing layer. The optimized Cu doped NiO shows optical band gap of 3.17 eV with high electrical mobility and moderate carrier concentration of 43.2 cm<sup>2</sup>/V-s and 1.51 × 10<sup>18</sup> cm<sup>-3</sup>, respectively. X-ray photoelectron spectroscopy analysis (XPS) shows modified Ni<sup>3+</sup>/Ni<sup>2+</sup> ratio with Cu doping in NiO, which enhances hole mobility and conductivity of HTL. The band alignment, recombination losses, and charge transport in several devices (FTO/Cu:NiO/Cs<sub>0.05</sub>(FA<sub>0.83</sub>MA<sub>0.17</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>/Au) are also investigated using capacitance- voltage (CV) and electrochemical impedance spectroscopy (EIS). Optimized HTL showed a lower trap density (5.20 × 10<sup>20</sup> cm<sup>-</sup> <sup>2</sup> eV<sup>-</sup>¹), which resulted in a decrease of recombination losses and an increase in charge transport. The drift-diffusion model based simulation results also reveals the impact of interface defect density on power conversion efficiency (PCE). Final solar cell is fabricated on optimum Cu doped NiO HTL layers which showed an efficiency of 16.61% with enhanced fill factor (FF) of 77%. This study provides a detailed analysis of Cu doped NiO and their band alignment for a potential hole transport material in triple cation perovskite solar cells.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2504237"},"PeriodicalIF":13.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Engineering and Band Alignment Studies of Cu Doped NiO as a Hole Transport Layer for Triple Cationic Perovskite Solar Cells.\",\"authors\":\"Puja, Arpit Verma, Pramod Yadav, Kanwar Singh Nalwa, Mukesh Kumar\",\"doi\":\"10.1002/smll.202504237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hole selective inorganic transport layer plays an important role for higher stability of p-i-n perovskite solar cell. Here, this study investigates optimized Cu doping in NiO hole transport layer (HTL) and studied its interface with triple cation perovskite (Cs<sub>0.05</sub>(FA<sub>0.83</sub>MA<sub>0.17</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>) absorbing layer. The optimized Cu doped NiO shows optical band gap of 3.17 eV with high electrical mobility and moderate carrier concentration of 43.2 cm<sup>2</sup>/V-s and 1.51 × 10<sup>18</sup> cm<sup>-3</sup>, respectively. X-ray photoelectron spectroscopy analysis (XPS) shows modified Ni<sup>3+</sup>/Ni<sup>2+</sup> ratio with Cu doping in NiO, which enhances hole mobility and conductivity of HTL. The band alignment, recombination losses, and charge transport in several devices (FTO/Cu:NiO/Cs<sub>0.05</sub>(FA<sub>0.83</sub>MA<sub>0.17</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>/Au) are also investigated using capacitance- voltage (CV) and electrochemical impedance spectroscopy (EIS). Optimized HTL showed a lower trap density (5.20 × 10<sup>20</sup> cm<sup>-</sup> <sup>2</sup> eV<sup>-</sup>¹), which resulted in a decrease of recombination losses and an increase in charge transport. The drift-diffusion model based simulation results also reveals the impact of interface defect density on power conversion efficiency (PCE). Final solar cell is fabricated on optimum Cu doped NiO HTL layers which showed an efficiency of 16.61% with enhanced fill factor (FF) of 77%. This study provides a detailed analysis of Cu doped NiO and their band alignment for a potential hole transport material in triple cation perovskite solar cells.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2504237\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504237\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空穴选择性无机输运层对p-i-n钙钛矿太阳能电池的高稳定性起着重要作用。本研究对NiO空穴输运层(HTL)中的Cu掺杂进行了优化,并研究了其与三阳离子钙钛矿(Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3)吸收层的界面。优化后的Cu掺杂NiO的光学带隙为3.17 eV,电迁移率高,载流子浓度适中,分别为43.2 cm2/V-s和1.51 × 1018 cm-3。x射线光电子能谱分析(XPS)表明,在NiO中掺杂Cu修饰了Ni3+/Ni2+的比例,提高了HTL的空穴迁移率和电导率。利用电容-电压(CV)和电化学阻抗谱(EIS)研究了几种器件(FTO/Cu:NiO/Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3/Au)的能带取向、复合损耗和电荷输运。优化后的HTL具有较低的陷阱密度(5.20 × 1020 cm- 2 eV-¹),减少了复合损失,增加了电荷输运。基于漂移扩散模型的仿真结果也揭示了界面缺陷密度对功率转换效率的影响。最终的太阳能电池是在最佳的Cu掺杂NiO HTL层上制备的,其效率为16.61%,增强填充因子(FF)为77%。本研究详细分析了Cu掺杂NiO及其在三阳离子钙钛矿太阳能电池中作为潜在空穴传输材料的能带排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface Engineering and Band Alignment Studies of Cu Doped NiO as a Hole Transport Layer for Triple Cationic Perovskite Solar Cells.

Interface Engineering and Band Alignment Studies of Cu Doped NiO as a Hole Transport Layer for Triple Cationic Perovskite Solar Cells.

Hole selective inorganic transport layer plays an important role for higher stability of p-i-n perovskite solar cell. Here, this study investigates optimized Cu doping in NiO hole transport layer (HTL) and studied its interface with triple cation perovskite (Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3) absorbing layer. The optimized Cu doped NiO shows optical band gap of 3.17 eV with high electrical mobility and moderate carrier concentration of 43.2 cm2/V-s and 1.51 × 1018 cm-3, respectively. X-ray photoelectron spectroscopy analysis (XPS) shows modified Ni3+/Ni2+ ratio with Cu doping in NiO, which enhances hole mobility and conductivity of HTL. The band alignment, recombination losses, and charge transport in several devices (FTO/Cu:NiO/Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3/Au) are also investigated using capacitance- voltage (CV) and electrochemical impedance spectroscopy (EIS). Optimized HTL showed a lower trap density (5.20 × 1020 cm- 2 eV-¹), which resulted in a decrease of recombination losses and an increase in charge transport. The drift-diffusion model based simulation results also reveals the impact of interface defect density on power conversion efficiency (PCE). Final solar cell is fabricated on optimum Cu doped NiO HTL layers which showed an efficiency of 16.61% with enhanced fill factor (FF) of 77%. This study provides a detailed analysis of Cu doped NiO and their band alignment for a potential hole transport material in triple cation perovskite solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信