{"title":"WTAP介导的m6A修饰稳定PDIA3P1并促进食管鳞状细胞癌组蛋白乳酸化驱动的肿瘤进展","authors":"Tao Huang, Qi You, Jiawei Liu, Xuguang Shen, Dengjun Huang, Xinlu Tao, Zhijie He, Chengwei Wu, Xinran Xi, Shouqiang Yu, Feng Liu, Zhihao Wu, Wenjun Mao, Shaojin Zhu","doi":"10.1002/advs.202506529","DOIUrl":null,"url":null,"abstract":"<p>Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant cancer with high incidence and mortality rate. Many studies have shown that long noncoding RNAs (lncRNAs are involved in the progression of various types of tumors. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) promotes the progression of ESCC, but the molecular mechanism behind this is still unclear. In this study, PDIA3P1 is highly expressed in ESCC, produces more lactate by regulating glycolysis, and the increased lactate upregulates lactylation levels to drive tumor progression. Mechanistically, PDIA3P1 competes with miR-152-3p to prevent degradation of glucose transporter 1 (GLUT1) mRNA, and disrupts the binding between membrane-associated RING-CH 8 (MARCH8) and hexokinase 2 (HK2) to reduce ubiquitination degradation of HK2, thereby promoting glycolysis. High activity glycolysis produces more lactate, which upregulates the level of histone H4K8 lactylation (H4K8la) and promotes the transcription of target bone morphogenic protein 7 (BMP7). Functionally, BMP7 is involved in the regulation of ESCC progression by PDIA3P1 both in vivo and in vitro. In addition, wilms tumor 1-associated protein (WTAP) mediated m6A modification enhances the stability of PDIA3P1 through Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) dependent recognition. Taken together, these findings reveal the key role of PDIA3P1 regulates glycolysis-H4K8la-BMP7 axis in the progression of ESCC and provides new insights into the interplay between metabolic reprogramming and epigenetic regulation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 33","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506529","citationCount":"0","resultStr":"{\"title\":\"WTAP Mediated m6A Modification Stabilizes PDIA3P1 and Promotes Tumor Progression Driven by Histone Lactylation in Esophageal Squamous Cell Carcinoma\",\"authors\":\"Tao Huang, Qi You, Jiawei Liu, Xuguang Shen, Dengjun Huang, Xinlu Tao, Zhijie He, Chengwei Wu, Xinran Xi, Shouqiang Yu, Feng Liu, Zhihao Wu, Wenjun Mao, Shaojin Zhu\",\"doi\":\"10.1002/advs.202506529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant cancer with high incidence and mortality rate. Many studies have shown that long noncoding RNAs (lncRNAs are involved in the progression of various types of tumors. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) promotes the progression of ESCC, but the molecular mechanism behind this is still unclear. In this study, PDIA3P1 is highly expressed in ESCC, produces more lactate by regulating glycolysis, and the increased lactate upregulates lactylation levels to drive tumor progression. Mechanistically, PDIA3P1 competes with miR-152-3p to prevent degradation of glucose transporter 1 (GLUT1) mRNA, and disrupts the binding between membrane-associated RING-CH 8 (MARCH8) and hexokinase 2 (HK2) to reduce ubiquitination degradation of HK2, thereby promoting glycolysis. High activity glycolysis produces more lactate, which upregulates the level of histone H4K8 lactylation (H4K8la) and promotes the transcription of target bone morphogenic protein 7 (BMP7). Functionally, BMP7 is involved in the regulation of ESCC progression by PDIA3P1 both in vivo and in vitro. In addition, wilms tumor 1-associated protein (WTAP) mediated m6A modification enhances the stability of PDIA3P1 through Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) dependent recognition. Taken together, these findings reveal the key role of PDIA3P1 regulates glycolysis-H4K8la-BMP7 axis in the progression of ESCC and provides new insights into the interplay between metabolic reprogramming and epigenetic regulation.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506529\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506529\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506529","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
WTAP Mediated m6A Modification Stabilizes PDIA3P1 and Promotes Tumor Progression Driven by Histone Lactylation in Esophageal Squamous Cell Carcinoma
Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant cancer with high incidence and mortality rate. Many studies have shown that long noncoding RNAs (lncRNAs are involved in the progression of various types of tumors. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) promotes the progression of ESCC, but the molecular mechanism behind this is still unclear. In this study, PDIA3P1 is highly expressed in ESCC, produces more lactate by regulating glycolysis, and the increased lactate upregulates lactylation levels to drive tumor progression. Mechanistically, PDIA3P1 competes with miR-152-3p to prevent degradation of glucose transporter 1 (GLUT1) mRNA, and disrupts the binding between membrane-associated RING-CH 8 (MARCH8) and hexokinase 2 (HK2) to reduce ubiquitination degradation of HK2, thereby promoting glycolysis. High activity glycolysis produces more lactate, which upregulates the level of histone H4K8 lactylation (H4K8la) and promotes the transcription of target bone morphogenic protein 7 (BMP7). Functionally, BMP7 is involved in the regulation of ESCC progression by PDIA3P1 both in vivo and in vitro. In addition, wilms tumor 1-associated protein (WTAP) mediated m6A modification enhances the stability of PDIA3P1 through Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) dependent recognition. Taken together, these findings reveal the key role of PDIA3P1 regulates glycolysis-H4K8la-BMP7 axis in the progression of ESCC and provides new insights into the interplay between metabolic reprogramming and epigenetic regulation.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.