三维无限三核锌单元的配体工程金属有机框架光催化单氧化亚砜胺。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinglei He, Chunlong Yu, Fengtao Zhang, Chenxu Gong, Jingheng Li, Ding-Bo Zeng, Bin Zhao, Xiong Chen, Ke-Yin Ye
{"title":"三维无限三核锌单元的配体工程金属有机框架光催化单氧化亚砜胺。","authors":"Xinglei He,&nbsp;Chunlong Yu,&nbsp;Fengtao Zhang,&nbsp;Chenxu Gong,&nbsp;Jingheng Li,&nbsp;Ding-Bo Zeng,&nbsp;Bin Zhao,&nbsp;Xiong Chen,&nbsp;Ke-Yin Ye","doi":"10.1002/advs.202506037","DOIUrl":null,"url":null,"abstract":"<p>Metal–organic frameworks (MOFs) composed of infinite metal units exhibit enhanced electron transport and charge migration capabilities compared to discrete metal units. Herein, three underdeveloped isomorphic MOFs featuring 3D infinite zinc units are designed and synthesized. The Lewis acidity and photocatalytic activity of these MOFs are fine-tuned through atomic-level engineering of nitrogen atoms of ligands and the resultant change of charge transfer modes. These MOFs are promising catalysts in the photocatalytic monooxygenation of sulfenamides with molecular oxygen. Mechanistic investigations suggest that the uneven charge distribution and large dipole moment at the pyridine center of 1-PTB and the infinite Zn unit frameworks of degenerate energy levels are key to its excellent photocatalytic activity.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 33","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506037","citationCount":"0","resultStr":"{\"title\":\"Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides\",\"authors\":\"Xinglei He,&nbsp;Chunlong Yu,&nbsp;Fengtao Zhang,&nbsp;Chenxu Gong,&nbsp;Jingheng Li,&nbsp;Ding-Bo Zeng,&nbsp;Bin Zhao,&nbsp;Xiong Chen,&nbsp;Ke-Yin Ye\",\"doi\":\"10.1002/advs.202506037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal–organic frameworks (MOFs) composed of infinite metal units exhibit enhanced electron transport and charge migration capabilities compared to discrete metal units. Herein, three underdeveloped isomorphic MOFs featuring 3D infinite zinc units are designed and synthesized. The Lewis acidity and photocatalytic activity of these MOFs are fine-tuned through atomic-level engineering of nitrogen atoms of ligands and the resultant change of charge transfer modes. These MOFs are promising catalysts in the photocatalytic monooxygenation of sulfenamides with molecular oxygen. Mechanistic investigations suggest that the uneven charge distribution and large dipole moment at the pyridine center of 1-PTB and the infinite Zn unit frameworks of degenerate energy levels are key to its excellent photocatalytic activity.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 33\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202506037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506037\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202506037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与离散金属单元相比,由无限金属单元组成的金属有机骨架具有增强的电子传递和电荷迁移能力。本文设计并合成了三个具有三维无限锌单元的欠发达同构mof。通过配体氮原子的原子水平工程和由此产生的电荷转移模式的改变,对这些mof的路易斯酸度和光催化活性进行了微调。这些mof在亚砜酰胺与分子氧的光催化单氧反应中具有很好的应用前景。机理研究表明,1-PTB在吡啶中心的电荷分布不均匀、偶极矩大以及简并能级的无限Zn单元框架是其具有优异光催化活性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides

Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides

Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides

Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides

Ligand-Engineered Metal–Organic Frameworks of 3D Infinite Trinuclear Zinc Units for Photocatalytic Monooxygenation of Sulfenamides

Metal–organic frameworks (MOFs) composed of infinite metal units exhibit enhanced electron transport and charge migration capabilities compared to discrete metal units. Herein, three underdeveloped isomorphic MOFs featuring 3D infinite zinc units are designed and synthesized. The Lewis acidity and photocatalytic activity of these MOFs are fine-tuned through atomic-level engineering of nitrogen atoms of ligands and the resultant change of charge transfer modes. These MOFs are promising catalysts in the photocatalytic monooxygenation of sulfenamides with molecular oxygen. Mechanistic investigations suggest that the uneven charge distribution and large dipole moment at the pyridine center of 1-PTB and the infinite Zn unit frameworks of degenerate energy levels are key to its excellent photocatalytic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信